• Photonics Research
  • Vol. 8, Issue 9, 1522 (2020)
Dong Pan1、2、†, Zaisheng Lin2、3、4、5、†, Jiawei Wu1、2, Haoran Zhang1、2, Zhen Sun2、3, Dong Ruan1、2, Liuguo Yin2、3、4、5、6、*, and Gui Lu Long1、2、3、4、5、7、*
Author Affiliations
  • 1State Key Laboratory of Low-dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
  • 2Frontier Science Center for Quantum Information, Beijing 100084, China
  • 3School of Information Science and Technology, Tsinghua University, Beijing 100084, China
  • 4Beijing National Research Center for Information Science and Technology, Beijing 100084, China
  • 5Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • 6e-mail: yinlg@tsinghua.edu.cn
  • 7e-mail: gllong@tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.388790 Cite this Article Set citation alerts
    Dong Pan, Zaisheng Lin, Jiawei Wu, Haoran Zhang, Zhen Sun, Dong Ruan, Liuguo Yin, Gui Lu Long. Experimental free-space quantum secure direct communication and its security analysis[J]. Photonics Research, 2020, 8(9): 1522 Copy Citation Text show less
    References

    [1] H. Sun, S. Liu, W. Lin, K. Y. Zhang, W. Lv, X. Huang, F. Huo, H. Yang, G. Jenkins, Q. Zhao, W. Huang. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun., 5, 3601(2014).

    [2] S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W.-W. Xiong, L. Li, Z. An, W. Huang. Visible-light-excited ultralong organic phosphorescence by manipulating intermolecular interactions. Adv. Mater., 29, 1701244(2017).

    [3] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. IEEE International Conference on Computers, Systems, and Signal Processing, 175-179(1984).

    [4] S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, Z.-F. Han. Field test of wavelength-saving quantum key distribution network. Opt. Lett., 35, 2454-2456(2010).

    [5] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express, 19, 10387-10409(2011).

    [6] S. Wang, W. Chen, Z.-Q. Yin, H.-W. Li, D.-Y. He, Y.-H. Li, Z. Zhou, X.-T. Song, F.-Y. Li, D. Wang, H. Chen, Y.-G. Han, J.-Z. Huang, J.-F. Guo, P.-L. Hao, M. Li, C.-M. Zhang, D. Liu, W.-Y. Liang, C.-H. Miao, P. Wu, G.-C. Guo, Z.-F. Han. Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express, 22, 21739-21756(2014).

    [7] H.-Y. Liu, X.-H. Tian, C. Gu, P. Fan, X. Ni, R. Yang, J.-N. Zhang, M. Hu, J. Guo, X. Cao, X. Hu, G. Zhao, Y.-Q. Lu, Y.-X. Gong, Z. Xie, S.-N. Zhu. Drone-based entanglement distribution towards mobile quantum networks. Natl. Sci. Rev., 7, 921-928(2020).

    [8] W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, C. M. Simmons. Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett., 81, 3283-3286(1998).

    [9] J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, C. J. Williams, E. W. Hagley, J. Wen. Quantum key distribution with 1.25 Gbps clock synchronization. Opt. Express, 12, 2011-2016(2004).

    [10] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, H. Weinfurter. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett., 98, 010504(2007).

    [11] R. Tannous, Z. Ye, J. Jin, K. B. Kuntz, N. Lütkenhaus, T. Jennewein. Demonstration of a 6 state-4 state reference frame independent channel for quantum key distribution. Appl. Phys. Lett., 115, 211103(2019).

    [12] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, J.-W. Pan. Satellite-to-ground quantum key distribution. Nature, 549, 43-47(2017).

    [13] G.-L. Long, X.-S. Liu. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 65, 032302(2002).

    [14] F.-G. Deng, G. L. Long, X.-S. Liu. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A, 68, 042317(2003).

    [15] F.-G. Deng, G. L. Long. Secure direct communication with a quantum one-time pad. Phys. Rev. A, 69, 052319(2004).

    [16] C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, G. L. Long. Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A, 71, 044305(2005).

    [17] J.-Y. Hu, B. Yu, M.-Y. Jing, L.-T. Xiao, S.-T. Jia, G.-Q. Qin, G.-L. Long. Experimental quantum secure direct communication with single photons. Light Sci. Appl., 5, e16144(2016).

    [18] W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi, G.-C. Guo. Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 118, 220501(2017).

    [19] F. Zhu, W. Zhang, Y. Sheng, Y. Huang. Experimental long-distance quantum secure direct communication. Sci. Bull., 62, 1519-1524(2017).

    [20] R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, G.-L. Long. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl., 8, 22(2019).

    [21] A. M. Marino, C. Stroud. Deterministic secure communications using two-mode squeezed states. Phys. Rev. A, 74, 022315(2006).

    [22] J. H. Shapiro, Z. Zhang, F. N. Wong. Secure communication via quantum illumination. Quantum Inf. Process., 13, 2171-2193(2014).

    [23] S. Pirandola, S. L. Braunstein, S. Mancini, S. Lloyd. Quantum direct communication with continuous variables. Europhys. Lett., 84, 20013(2008).

    [24] S. Pirandola, S. L. Braunstein, S. Lloyd, S. Mancini. Confidential direct communications: a quantum approach using continuous variables. IEEE J. Sel. Top. Quantum Electron., 15, 1570-1580(2009).

    [25] D. J. Lum, J. C. Howell, M. S. Allman, T. Gerrits, V. B. Verma, S. W. Nam, C. Lupo, S. Lloyd. Quantum enigma machine: experimentally demonstrating quantum data locking. Phys. Rev. A, 94, 022315(2016).

    [26] Z.-R. Zhou, Y.-B. Sheng, P.-H. Niu, L.-G. Yin, G.-L. Long, L. Hanzo. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 63, 230362(2020).

    [27] P.-H. Niu, Z.-R. Zhou, Z.-S. Lin, Y.-B. Sheng, L.-G. Yin, G.-L. Long. Measurement-device-independent quantum communication without encryption. Sci. Bull., 63, 1345-1350(2018).

    [28] Z. Gao, T. Li, Z. Li. Long-distance measurement-device-independent quantum secure direct communication. Europhys. Lett., 125, 40004(2019).

    [29] L. Zhou, Y.-B. Sheng, G.-L. Long. Device-independent quantum secure direct communication against collective attacks. Sci. Bull., 65, 12-20(2019).

    [30] D. Gottesman, H.-K. Lo, N. Lütkenhaus, J. Preskill. Security of quantum key distribution with imperfect devices. Quantum Inf. Comput., 4, 325-360(2004).

    [31] W.-Y. Hwang. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett., 91, 057901(2003).

    [32] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett., 94, 230503(2005).

    [33] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).

    [34] F.-G. Deng, G. L. Long. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A, 70, 012311(2004).

    [35] M. Lucamarini, S. Mancini. Secure deterministic communication without entanglement. Phys. Rev. Lett., 94, 140501(2005).

    [36] H. Lu. Ambiguous discrimination among linearly dependent quantum states and its application to two-way deterministic quantum key distribution. J. Opt. Soc. Am. B, 36, B26-B30(2019).

    [37] Q. Zhou, R. Valivarthi, C. John, W. Tittel. Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng., 1, e8(2019).

    [38] A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, N. Gisin. ‘Plug and play’ systems for quantum cryptography. Appl. Phys. Lett., 70, 793-795(1997).

    [39] S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, C. Hui, P.-L. Hao, G.-J. Fan-Yuan, C. Wang, L.-J. Zhang, J. Kuang, S.-F. Liu, Z. Zhou, Y.-G. Wang, G.-C. Guo, Z.-F. Han. Practical gigahertz quantum key distribution robust against channel disturbance. Opt. Lett., 43, 2030-2033(2018).

    [40] A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, J.-M. Merolla. Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory, 53, 2933-2945(2007).

    [41] A. D. Wyner. The wire-tap channel. Bell System Tech. J., 54, 1355-1387(1975).

    [42] M. Tomamichel, C. C. W. Lim, N. Gisin, R. Renner. Tight finite-key analysis for quantum cryptography. Nat. Commun., 3, 634(2012).

    [43] H. Lu, C.-H. F. Fung, X. Ma, Q.-Y. Cai. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys. Rev. A, 84, 042344(2011).

    [44] C. I. Henao, R. M. Serra. Practical security analysis of two-way quantum-key-distribution protocols based on nonorthogonal states. Phys. Rev. A, 92, 052317(2015).

    [45] J. Wu, Z. Lin, L. Yin, G.-L. Long. Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng., 1, e26(2019).

    [46] Y. Feng, R. Duan, M. Ying. Unambiguous discrimination between mixed quantum states. Phys. Rev. A, 70, 012308(2004).

    [47] A. S. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inf. Trans., 9, 177-183(1973).

    [48] R. Jozsa, J. Schlienz. Distinguishability of states and von Neumann entropy. Phys. Rev. A, 62, 012301(2000).

    [49] W. O. Krawec. Quantum key distribution with mismatched measurements over arbitrary channels. Quantum Inf. Comput., 17, 209-241(2017).

    [50] M. Christandl, R. Renner, A. Ekert. A generic security proof for quantum key distribution(2004).

    [51] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301-1350(2009).

    [52] X. Ma, B. Qi, Y. Zhao, H.-K. Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 72, 012326(2005).

    [53] X. Ma, H.-K. Lo. Quantum key distribution with triggering parametric down-conversion sources. New J. Phys., 10, 073018(2008).

    [54] D. J. C. MacKay. Information Theory, Inference and Learning Algorithms(2003).

    [55] S. Zhang, M. Ying. Set discrimination of quantum states. Phys. Rev. A, 65, 062322(2002).

    [56] S. Lin, Q.-Y. Wen, F. Gao, F.-C. Zhu. Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A, 79, 054303(2009).

    [57] V. Scarani, A. Acin, G. Ribordy, N. Gisin. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett., 92, 057901(2004).

    [58] C.-H. F. Fung, K. Tamaki, H.-K. Lo. Performance of two quantum-key-distribution protocols. Phys. Rev. A, 73, 012337(2006).

    [59] S. L. Zhang, X. Zou, K. Li, C. Jin, G. C. Guo. Limitation of decoy-state Scarani-Acin-Ribordy-Gisin quantum-key-distribution protocols with a heralded single-photon source. Phys. Rev. A, 76, 044304(2007).

    [60] J.-B. Li, X.-M. Fang. Nonorthogonal decoy-state quantum key distribution. Chin. Phys. Lett., 23, 768-775(2006).

    [61] I. I. Kim, E. J. Korevaar. Availability of free-space optics (FSO) and hybrid FSO/RF systems. Proc. SPIE, 4530, 84-95(2001).

    [62] A. Carrasco-Casado, N. Denisenko, V. Fernandez. Correction of beam wander for a free-space quantum key distribution system operating in urban environment. Opt. Eng., 53, 084112(2014).

    [63] O. Elmabrok, M. Razavi. Wireless quantum key distribution in indoor environments. J. Opt. Soc. Am. B, 35, 197-207(2018).

    Dong Pan, Zaisheng Lin, Jiawei Wu, Haoran Zhang, Zhen Sun, Dong Ruan, Liuguo Yin, Gui Lu Long. Experimental free-space quantum secure direct communication and its security analysis[J]. Photonics Research, 2020, 8(9): 1522
    Download Citation