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We report an experimental implementation of free-space quantum secure direct communication based on single
photons. The quantum communication scheme uses phase encoding, and the asymmetric Mach–Zehnder inter-
ferometer is optimized so as to automatically compensate phase drift of the photons during their transitions over
the free-space medium. At a 16 MHz pulse repetition frequency, an information transmission rate of 500 bps over
a 10 m free space with a mean quantum bit error rate of 0.49%� 0.27% is achieved. The security is analyzed under
the scenario that Eve performs the collective attack for single-photon state and the photon number splitting attack
for multi-photon state in the depolarizing channel. Our results show that quantum secure direct communication
is feasible in free space. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.388790

1. INTRODUCTION

Information security and data encryption [1,2] have risen to a
pivotal position in the digital information era. The develop-
ment of quantum communication provides us with new ap-
proaches for secure communication tasks, with the benefit
of provable security provided by quantum mechanical laws.
Quantum key distribution (QKD) protocol was proposed by
Bennett and Brassard in 1984 (called BB84 QKD protocol)
[3] to perform key exchanges between legitimate distant users.
Hitherto, QKD has been well developed in optical fiber, laying
the foundation for the establishment of quantum communica-
tion networks [4–6]. Compared with fiber, the free-space chan-
nel is also considered to be a befitting link for quantum
communication. The atmosphere has several high transmission
windows at particular wavelengths, which allows low-loss light
transmission. Quantum communication can be established by
using a free-space channel [7] for rough areas where optical
fiber networks are not constructed. In addition, free-space
quantum communication is valuable for long-distance quan-
tum communication, combining earth-to-satellite and satel-
lite-to-satellite communications. Due to nonbirefringence for
the propagation of light in the atmosphere, the polarization
of a single photon is maintained well, most free-space quantum
communications are implemented using polarization en-
coding [8–12]. QKD ensures security through detection of

eavesdropping on-site. Therefore QKD transmits random num-
bers first, and if it can assure no eavesdropping, the random
numbers are adopted as keys for use to encrypt the message
in a subsequent classical communication. But it cannot prevent
the eavesdropper from obtaining the transmitted ciphertext.

In the past two decades, quantum secure direct communi-
cation (QSDC) was proposed and developed [13–16]. QSDC
directly conveys safely secret messages over the quantum chan-
nel. Demonstration experiments have contributed the key tech-
nologies of QSDC, such as frequency coding [17], quantum
memory [18], fiber entanglement source [19], and practical sys-
tem for intra-city applications [20]. Up to now, this philosophy
has been extended to numerous different theoretical proposals
aimed to directly convey secret information over the quantum
channel, which guarantees security by ensuring that the eaves-
dropper cannot simultaneously access the two parts of a
correlated quantum state [13,14,16,21,22] or by encrypting
information with the quantum state [15,23–25]. Recently, the
measurement-device-independent (MDI) theories of QSDC
have been established [26–28], MDI scheme for the single
photon–based QSDC was given in Ref. [26], and that for
the entanglement-based QSDC protocols in Refs. [13,14] is
provided in Ref. [27]. The scheme that is secure against all
defects in devices in QSDC, namely, the device-independent
QSDC, was given in Ref. [29].
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Against the aforementioned background, our main contri-
butions are as follows. First, to the best of our knowledge, we
report the first fully operational system for free-space QSDC
with phase encoding. The transmitter and receiver modules
are further developed by utilizing the most common fiber op-
tical components. A round-trip optical architecture can also
mitigate the problem of phase drift in the free-space channel
so as to achieve a stable QSDC. Second, the security of the
QSDC system is analyzed under the photon number splitting
(PNS) attack for multi-photon components. The Gottesman-
Lo-Lütkenhaus-Preskill (GLLP) theory [30] and decoy state
[31–33] can be extended into our model to analyze security.
One surprising result is that we can achieve secure information
transmission by the two-photon component, which is consis-
tent with the results of two-way QKD [34–36], a special case of
the DL04 QSDC protocol [15]. This paper is arranged as fol-
lows. In Section 2, we review the details of the single photon–
based QSDC protocol and show how we run it on a free-space
experimental system with phase encoding. In Section 3, we
present the experimental results. In Section 4, we analyze
the security of the QSDC system. Finally, conclusions are given
in Section 5.

2. EXPERIMENTAL IMPLEMENTATION

A. Protocol
The DL04 QSDC protocol [15] realized in this work has the
following steps.

(1) Bob randomly chooses either the basis Z or X for prepar-
ing a sequence of single photons, which are subsequently trans-
mitted to Alice. Each of the photons is in one of four quantum
states: fj0i,j1i,j�i��j0i�j1i�∕ ffiffiffi

2
p

,j−i��j0i− j1i�∕ ffiffiffi
2

p g.

One could implement this random selection using a quantum
random number generator [37].

(2) After receiving the photons from Bob, Alice randomly
chooses some photons as samples for detecting eavesdropping.
For these selected photons, Alice measures each of them by us-
ing either the basis Z or X randomly and then announces the
positions of the sample together with the measurement basis
and outcomes. Alice and Bob obtained the detection bit error
rate (DBER) through a classical authenticated channel.

(3) If the DBER is lower than a predetermined threshold,
the information encoding process continues. Alice performs
I � j0ih0j � j1ih1j or Y � iσy � j0ih1j − j1ih0j on the re-
maining photons to encode the secret information bit 0 or
1 and then returns them to Bob. She will also encode some
photons randomly for error-checking. Otherwise, the commu-
nication process is aborted.

(4) After receiving the photon sequence, Bob deterministi-
cally decodes the secret information. Bob obtains a quantum
bit error rate (QBER) by discussing with Alice the check-
ing bits.

There are two error rates in the DL04 QSDC protocol, the
DBER and the QBER, which ensure the security of the first
transmission and the reliability of the second transmission,
respectively.

B. Phase Encoding
The schematic of our experimental setup is shown in Fig. 1.
The system is comprised of two legitimate users’ optical setups
and a free-space channel between them. The apparatus of
Alice and Bob all adopt fiber-optic components. Some low-
absorption atmospheric spectral windows in the near-infrared,
such as regions of λ ∼ 850 nm and λ ∼ 1550 nm, are usually
considered for free-space quantum communications. Our sys-
tem works at a wavelength of 1550 nm to take advantage of a

Fig. 1. Schematic diagram of free-space QSDC system. Att, attenuator; BS, beam splitter; DL, delay line; FPGA, field-programmable gate array;
FR, Faraday rotator; PBS, polarization beam splitter; PC, polarization controller; PM, phase modulator; PMCIR, polarization-maintaining circu-
lator; PMFC, polarization-maintaining fiber coupler; SPD, single-photon detector; TFOC, triplet fiber-optic collimator. Blue, yellow, and red lines
are the electric line, optical fiber line, and free-space path, respectively.
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peak in the typical atmospheric transmission window and the
low attenuation dip in fiber-optic components.

The laser pulses are emitted at Bob with a repetition fre-
quency of 16 MHz and a pulse width of 200 ps. They are
reduced to a specific attenuated level at the input of Bob’s
station. To be more specific, Bob modulates a random phase
ϕB
1 ∈ f0, π∕2, π, 3π∕2g on the pulse by using his phase modu-

lator (PM) located in the long-path of the asymmetric Mach–
Zehnder interferometer. It is equivalent to the preparation of
four initial states in the DL04 QSDC protocol. The photons
are transported to a triplet fiber-optic collimator (TFOC)
where they are output to a free-space channel and then col-
lected by Alice’s collimator for coupling into the single-mode
fiber. In our proof-of-principle experimental demonstration,
Alice’s and Bob’s collimators are separated by 10 m with four
mirror reflections. A 50/50 beam splitter (BS) in Alice’s system
randomly reflects or transmits the incoming photons to two
different paths: the lower and upper paths in Fig. 1, one for
detecting eavesdropping and the other for encoding secret in-
formation. For the lower path, Alice detects the photon with
her interferometer by randomly applying phase modulation
ϕA
1 ∈ f0, π∕2g to the pulse passing over the long-path, and

then a DBER is obtained by public discussion between
Alice and Bob. By contrast, in the upper path, an encoding
operation I or Y is performed on the pulse (previously passing
over the long-path at Bob) by adding a phase ϕA

2 � 0 or
ϕA
2 � π after it passes through the Faraday rotator (FR).

Finally, by the time of the pulse arriving back to Bob’s station,
Bob applies phase modulation ϕB

2 to the pulse for finishing
measurement according to the initial phase modulation that
he has imposed. To estimate the QBER, the measurement re-
sults of checking bits are compared with Alice’s encoding. The
photons are detected by InGaAs avalanche photodiodes gated
in Geiger mode and cooled to −50°C, with a gate width of 1 ns
and an efficiency of 5.57% as well as a dark count probability of
1 × 10−6 per gate.

In this setup, all pulses propagate over a loop with the FR
and the PM to perform information encoding. The Faraday
mirror in Muller’s scheme [38] is replaced by the FR. All pulses
only pass through the PM once compared with the Faraday
mirror as a reflection terminal, so this loop has less attenuation
than the original Muller’s scheme. It will help to improve the
repetition rate of our QSDC system. The pulses are delivered
through the same optical path to convey information, the phase
is very stable, and the light propagation with an FR automati-
cally compensates for all polarization fluctuations in the optical
links. Furthermore, this system has a low requirement on the
PM, since the PM is consistent with the conventional one that
only requires both its input and output fibers are polarization-
maintaining fibers [39]. The polarization controller (PC) lo-
cated at the Alice site is used to compensate polarization drift
in the fiber so that the pulses are completely transmitted at the
polarization beam splitter (PBS), guiding the short (long) path
pulse which comes from Bob into Alice’s long (short) path. This
free-space QSDC system is controlled as well as synchronized
by two field-programmable gate array (FPGA) devices, and
specific computer software programs are developed at Alice’s
and Bob’s terminal.

3. EXPERIMENTAL RESULTS

The experiment is conducted in a lab platform. Figure 2 shows
the interference fringes. Both curves are coincident with a
sinusoidal pattern. Interference visibility of single-trip (Bob-
to-Alice) and round-trip (Bob-to-Alice-to-Bob) is 97.37%
and 99.48%, respectively. Although the light is susceptible
to scatter in free space, producing phase aberrations which per-
turb quantum bits, stable interference can still be observed in
our experiment system.

To guarantee the reliable transmission of secret information,
low-density parity-check code [20,40] is applied to our free-
space QSDC system, and the compensation algorithm that
aims to eliminate phase shift of a single photon in the free-space
channel is equipped. A transmission rate of 500 bps is obtained,
and consequently, files of reasonable sizes, such as text, picture,
and audio, can be transmitted directly over the quantum chan-
nel by running our system. In the experiment test, Alice trans-
mits an image of size 800 × 525 pixels (194 k) to Bob, and
Fig. 3 shows the variation of DBER and QBER during the
transmission time. The average of DBER and QBER during
image transmission is 1.90%� 0.32% and 0.49%� 0.27%,
respectively. High visibility of the interferometer is crucial to
obtain a low error rate in our free-space QSDC system. The
QBER through a round-trip optical path is obtained where
phase drifts are auto-compensated by the modified Muller’s
scheme, while the DBER is detected through a single-trip op-
tical path using phase compensation algorithm to mitigate
phase shifts. This active compensation is not as efficient as
the auto-compensation, and therefore DBER is higher than
QBER, as shown in Fig. 3. The phenomenon of DBER higher
than QBER is consistent with the result of Fig. 2, in which the
interference visibility of the single-trip is lower than that of the
round-trip, since the interference visibility has an important

Fig. 2. Interference fringes. Driving voltage ranges from −6 V to
�6 V with a half-wave voltage 4.8 V and a step of about 0.1 V.
The interference fringe of a single-trip (photons transmitted from
Bob-to-Alice) is obtained from Alice’s detection. More specifically,
the counts are recorded by Alice’s SPD at each step when she drives
the voltage of her PM. By contrast, when the photons are received
by Bob (after their trip Bob-Alice-Bob), he drives the voltage of his
PM and records counts by his SPD to obtain the interference fringe
of the round-trip.
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influence on the bit error rate of the phase-encoding scheme.
The round-trip interferometer which has the same optical path
for the two interfering pulses produces better interference than
the single-trip where the two interfering pulses have only ap-
proximately the same optical path. Therefore, the interference
visibility of round-trip is higher than that of single-trip. The
interference visibility test is generally used to assess the perfor-
mance of interferometer while the effect of the dark count of
single-photon detectors is included. We maintain the detectors’
maximum count of ∼3000 by improving the light intensity
during the interference visibility test of the round-trip. In this
count rate, the influence of the dark count could be ignored. As
a result, the count curves are given as Fig. 2.

4. SECURITY ANALYSIS

The secrecy capacity lower bound of the DL04 QSDC is given
in Ref. [20] according to Wyner’s wiretap channel theory [41],
which can be written as

Cs � max
fp0g

fI�A:B� − I�A:E�g, (1)

where I�A:B� is the mutual information between Alice and
Bob, while I�A:E� is the maximum information that Eve
can steal, and p0 is the probability that Alice performs operation
I during her information encoding. Hence, Cs defines the
asymptotic information rate at which Alice can convey to
Bob over the quantum channel with the guarantee that Eve
has negligible information about the transmitted secret infor-
mation. Remarkably, the asymptotic regime cannot be met for
practical implementation, which has been fully considered in
QKD [42]. The finite size of a block in the practical implemen-
tation of block-transmission-based QSDC [13–15] is actually
the finite-size regime, and the block size would affect the secu-
rity of QSDC. However, the finite-size analysis of QKD cannot
be directly invoked for QSDC, since negotiating random secret

key bits is different from transmitting secret information bits.
The finite-size effect of QSDC would be an interesting direc-
tion for future research.

A. Photon Number Splitting Attack
The general collective attacks on a single photon have been
taken into account in many works [20,43–45]. However, prac-
tical quantum communication systems are usually implemented
with weak coherent light sources. The pulse generated from
such a light source can be written as a mixture of Fock states:
ρ � R �1∕2π�dθj ffiffiffi

μ
p

eiθih ffiffiffi
μ

p
eiθj � P

np�n, μ�jnihnj, in which
the number of photons n follows the Poisson distribution
p�n, μ� � e−μμn∕n! with mean photon number μ and phase
θ. It occasionally emits multiple photons. Unfortunately, the
pulses containing multiple photons cannot be secure in some
quantum communication protocols when they are under
PNS attack [31], namely, Eve splits one of the photons from
the pulse that contains two or more photons for measuring.
Here, we suggest a photon number splitting attack according
to the two-way characteristic of the DL04 QSDC, which com-
bines the PNS attack as well as the collective attack. Hence, the
security analysis of this system is given in the context of both the
general collective attack on a single photon and the PNS attack
on multiple photons.

The attack strategies of Eve are shown in Fig. 4. Eve has the
ability to discern the number of photons in every pulse, and
then the specific attack strategies performed by Eve would
be divided into two types. On the one hand, if the pulse in
the forward quantum channel contains only one photon
(n � 1), Eve performs the collective attack on this photon
[20,43]. To be more specific, Eve prepares ancilla states each
of which interacts individually with the photons sent from Bob-
to-Alice, and these ancilla states are stored in the quantum
memory until the photons are returned from Alice after secret
information has been encoded. Eve would perform the optimal
measurement by combining her ancilla states and the encoded
states in order to obtain the secret information. According to
Ref. [20], the maximum information that Eve can obtain from

Fig. 3. Error rates during image file transmission. Dashed lines re-
present the mean values of DBER, and dash-dotted lines show the
mean values of QBER. The definition of DBER and QBER is given
in Section 2.A, while the experimental approach for accessing them is
introduced in Section 2.B.

Fig. 4. Illustration of Eve’s attack strategies. n, the number of pho-
tons in a pulse in the forward quantum channel; EBA

μ is the error rate of
the Bob-Alice channel, which is also called as DBER; QBA

μ , the overall
signal gain of Alice; eBAdet , the erroneous signal detection of Alice; ρBE,
the joint state after Eve’s attack in the forward quantum channel;
QBAE

μ , the overall signal gain of Eve; ρBAE, the joint state after
Alice’s information encoding and Eve’s attacks in the two quantum
channels; EBAB

μ is QBER; QBAB
μ , the overall signal gain of Bob;

eBABdet is the erroneous signal detection of Bob.
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a single photon is I�A:E�n�1 � h�2eBA1 �, in which we have as-
sumed reasonably that Eve introduces equivalent error rate in
the X and Z basis, and eBA1 is the DBER originated from a
single photon. On the other hand, if the pulse in the forward
quantum channel is with photon number greater than 1
(n > 1), Eve can perform the PNS attack.

Let us start with case n ≥ 3. The four linearly independent
states �fj0i⊗n, j1i⊗n, j�i⊗n, j−i⊗ng, n ≥ 3� could be unambig-
uously discriminated [46], hence there is a powerful attack that
Eve can get all secret information for the pulse that contains
multi-photon components (n ≥ 3), and it goes as follows.
Eve captures this pulse sent from Bob, and then a new photon
in the right state that is based on her successful unambiguous
discrimination would be prepared and transmitted to Alice. If
Eve fails to discriminate the multi-photon state, she blocks it.
After the secret information encoding is finished by Alice,
Eve captures the pulse again and she can deterministically de-
code the secret information based on the known initial state.
Consequently, the pulses with multiple photons (n ≥ 3) re-
ferred to as multi-photon states cannot provide secrecy capacity
in the DL04 QSDC protocol.

Indeed, I�A:E�n≥3 � 1, and we need to derive the
secrecy capacity that two-photon components can achieve
under the PNS attack. In the PNS attack, Eve splits one of
the photons from the pulse that contains two photons in
the forward quantum channel and retains it. As for the other
photon, she applies the collective attack, as detailed above in
the case of n � 1. What is unusual is that Eve can get two in-
tercepted photons from each pulse, and these states will be
combined with her ancillas for the optimal measurement.
We assume that the initial state prepared by Bob is
ρB ��j00ih00j� j11ih11j� j��ih��j�j��ih��j�∕4.
Eve’s quantum operation in the PNS attack can be repre-
sented as

U j0iBj0iBjEi � j0iBj0iBjE0000i� j0iBj1iBjE0001i � jφ1i,
U j1iBj1iBjEi � j1iBj0iBjE1110i� j1iBj1iBjE1111i � jφ2i,
U j�iBj�iBjEi � jφ3i,
U j−iBj−iBjEi � jφ4i, (2)

where U is an unitary operation performed on two particles,
i.e., one photon of ρB together with jEi and jEi (jEi0000,
jEi0001, jEi1110, and jEi1111) is the ancilla state before (after)
attack. The effect of Alice’s encoding unitary operation Y
(single-particle operation) on the photons can be written as

YU j0iBj0iBjEi�−j0iBj1iBjE0000i�j0iBj0iBjE0001i� jφ5i,
YU j1iBj1iBjEi�−j1iBj1iBjE1110i�j1iBj0iBjE1111i� jφ6i,
YU j�iBj�iBjEi� jφ7i,
YU j−iBj−iBjEi� jφ8i: (3)

Hence, after Eve’s attack, the joint state of two photons and
Eve’s ancilla in the forward quantum channel is ρBE �
U �ρB ⊗ jEihE j�U †. During the information encoding, if
Alice performs unitary operation I or Y with the proba-
bility of p0 and p1 on the photons, respectively, the joint

state would become ρ0BE � U �ρB ⊗ jEihE j�U † or ρ1BE �
YU �ρB ⊗ jEihE j�U †Y † with respective probabilities. Thus,
the joint state that Eve can access in the backward quantum
channel is

ρBEA � p0 · ρ
0
BE � p1 · ρ

1
BE

� 1

4
�p0jφ1ihφ1j � p0jφ2ihφ2j � p0jφ3ihφ3j

� p0jφ4ihφ4j � p1jφ5ihφ5j � p1jφ6ihφ6j
� p1jφ7ihφ7j � p1jφ8ihφ8j�, (4)

where p0 � p1 � 1.
The maximum information that Eve can steal I�A:E� is

given by the Holevo bound χ [45,47], that is,

I�A:E� ≤ χ � max
fU g

fS�ρBEA� − p0 · S�ρ0BE� − p1 · S�ρ1BE�g,

(5)

where S�ρ� � −Tr�ρ log2 ρ� represents the von Neumann en-
tropy. On the one hand, since the density operators ρ0BE and ρ

1
BE

are only different in unitary operation from ρB ⊗ jEihE j, we
can conclude that S�ρ0BE��S�ρ1BE�� S�ρB ⊗ jEihE j��3∕2.
On the other hand, we must obtain the eigenvalues of the joint
state ρBEA in order to calculate the von Neumann entropy
S�ρBEA�. We can simplify the process of calculating eigenvalues
by using the Gram matrix representation, which is proved to
have the same eigenvalues with its corresponding density oper-
ator [48]. For the joint state ρBEA, its Gram matrix is given by

G� 1

4

2
6664

p0hφ1jφ1i p0hφ1jφ2i � � � ffiffiffiffiffiffiffiffiffip0p1
p hφ1jφ8i

p0hφ2jφ1i p0hφ2jφ2i � � � ffiffiffiffiffiffiffiffiffi
p0p1

p hφ2jφ8i
..
. ..

. ..
.

ffiffiffiffiffiffiffiffiffi
p0p1

p hφ8jφ1i ffiffiffiffiffiffiffiffiffi
p0p1

p hφ8jφ2i � � � p1hφ8jφ8i

3
7775:

(6)

Note that the above analysis applies to the most general PNS
attack. To illustrate the use of the above result, we assume that
Eve’s attack operator U is symmetric, which further means that
her attack could be modeled as a depolarizing channel [49].
The depolarizing channel is a typical model invoked in the
unconditional security proofs of some QKD protocols, as de-
tailed in Refs. [44,50,51]. Hence, in addition to the conditions
of orthonormality, hE0000jE0000i � hE0001jE0001i � 1 and
hE1110jE1110i � hE1111jE1111i � 1, there are some equations
of the depolarizing channel to calculate the specific values of
Gram matrix’s elements, which are given as follows [20,44]:

hE0000jE1110i � hE0001jE1111i � 0,

hE0000jE0001i � hE1110jE1111i � 0,

hE0001jE1110i � 0,

hE0000jE1111i � 1 − 2eBA2 , (7)

where eBA2 is the DBER caused by two photons from Bob-to-
Alice. Furthermore, we assume that p0 � p1 � 1∕2 [20]. After
cumbersome calculations, we can get that the eigenvalues of
ρBEA are λBEA1,2 � 0, λBEA3,4 � 1∕4, λBEA5,6 � �1 − 2eBA2 �∕4, and
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λBEA7,8 � 2eBA2 ∕4. Therefore, S�ρBEA��−Tr�ρBEA log2ρBEA��
−
P

iλ
BEA
i log2�λBEAi ��2�h�2e2�∕2, where h�x��−x log2�x�−

�1−x� log2�1−x� is the binary Shannon entropy. According to
Eq. (5), the maximum information that Eve can steal via the
pulse containing two photons is

I�A:E�n�2 �
1

2
h�2eBA2 � � 1

2
: (8)

One important conclusion we can draw from Eq. (8) is that the
DL04 QSDC protocol [15] has the ability to defend against the
PNS attack in the case of two photons, since I�A:E�n�2 could
be below one. The basic physics is that no basis announcement
is required in QSDC for information decoding, while basis
comparison is necessary for establishing the common secret keys
in the BB84 QKD [3].

B. System Model
In order to analyze the practical QSDC experiment system,
let us calculate I�A:B� and I�A:E� under the frame of Eve per-
forming the general collective attack on a single photon and
the PNS attack on multi-photons, considering the device
and channel losses. Assume that αBA and αBAB are the
channel attenuation of different paths BA and BAB,
respectively. As can be seen in Fig. 4, Eve performs her eaves-
dropping after Alice finishes information encoding, which
indicates αBAB � 2αBA. Thus, we have the channel transmis-
sions as follows:

tBA � 10−
�
αBA

10

�
,

tBAB � 10−
�
αBAB

10

�
, (9)

and then the concomitant overall transmissions are given by

ηBA � tBAηBAoptηAD,

ηBAB � tBABηBABopt η
B
D, (10)

where ηBAopt and ηBABopt are the specific devices’ intrinsic optical
losses, while ηAD and ηBD are the detection efficiency of Alice
and Bob, respectively. The transmittances of n-photon state
through different paths are ηBAn � 1 − �1 − ηBA�n and
ηBABn � 1 − �1 − ηBAB�n. With Y A

0 and Y B
0 as background de-

tection events of different parties, the yields become Y A
n �

Y A
0 � ηBAn − ηBAn Y A

0 ≈ Y A
0 � ηBAn and Y B

n ≈ Y B
0 � ηBABn , and

the overall signal gains and the error rates are given by [52]

QBA
μ �

X∞
n�0

QBA
μ,n �

X∞
n�0

p�n, μ�Y A
n � Y A

0 � 1 − e−ηBAμ,

QBAE
μ �

X∞
n�0

QBAE
μ,n ≤

X∞
n�0

�
QBA

μ,n − p�n, μ�Y A
0

�
max

�
1,

γE

γA

�
,

QBAB
μ �

X∞
n�0

QBAB
μ,n �

X∞
n�0

p�n, μ�Y B
n � Y B

0 � 1 − e−ηBABμ,

(11)

and

EBA
μ � e0Y A

0 � eBAdet�1 − e−η
BAμ�

QBA
μ

,

EBAB
μ � e0Y B

0 � eBABdet �1 − e−η
BABμ�

QBAB
μ

, (12)

where e0 � 1∕2 is the error rate of background, QBA
μ,n (QBAE

μ,n

and QBAB
μ,n ) is the n-photon signal gain at Alice (Eve and

Bob), and eBAdet and eBABdet are intrinsic detector error rates
which can be calculated by the visibilities V of the detection
system: eBAdet � �1 − V BA�∕2 and eBABdet � �1 − V BAB�∕2 [53].
The derivation of QBAE

μ,n is given in Appendix A.
According to the theory of binary symmetric channel and

binary erasure channel [54], the mutual information between
Alice and Bob can be calculated as

I�A:B� � QBAB
μ 	1 − h�EBAB

μ �
, (13)

where QBAB
μ is the overall signal gain of Bob after a round-trip

BAB, and EBAB
μ is the QBER. The secret information that

Eve can obtain from a single photon by using the collective
attack is [20,43]

I�A:E�n�1 � QBAE
μ,n�1h�2eBA1 �, (14)

where eBA1 is the DBER caused by the single photon. Given the
above, the lower bound of secrecy capacity is

Cs � QBAB
μ 	1 − h�EBAB

μ �
 − QBAE
μ,n�1h�2eBA1 �

− QBAE
μ,n�2

�
1

2
h�2eBA2 � � 1

2

�
− QBAE

μ,n≥3 · 1: (15)

Obviously, now we need to discuss how to evaluate the DBERs
in Eq. (15) caused by single-photon (eBA1 ) states and two-
photon (eBA2 ) states.

C. GLLP Theory
There is a pessimistic assumption in the GLLP theory [30]: all
multi-photon signals could be detected by Alice and all errors
originate from a single photon. Hence, the upper bound of eBA1
is evaluated by

eBA1 � EBA
μ

1 − p�n≥2, μ�
QBA

μ

, (16)

where EBA
μ is the DBER, and QBA

μ is the overall signal gain at
Alice’s terminal after the BA path. However, the GLLP theory
cannot give us a real value of eBA2 , in other words, eBA2 � 0 with
its assumption. In this case, I�A:E�n�2 � QBAE

μ,n�2 · �1∕2� ac-
cording to Eqs. (8) and (15), which means Eve can obtain a
part of the secret information from the two-photon state by
zero-DBER eavesdropping. Actually, it is a special case of
our PNS attack. Eve intercepts one photon in the forward
quantum channel but does nothing for the other and forwards
it directly (no error rate here, eBA2 � 0). After Alice finishes
secret information encoding, Eve intercepts the encoded pho-
ton and combines the intercepted two photons to read the
secret information. Note that the PNS attack needs to be com-
bined with the unambiguous state discrimination (USD) attack
[55], namely, Eve obtains information by discriminating the
states before and after Alice’s encoding operation, since there
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is no basis reconciliation in the DL04 QSDC protocol [15].
The upper bound on the maximum probability to discriminate
two mixed states is 1/2 [56], which matches the above-
mentioned result I�A:E�n�2 � QBAE

μ,n�2 · �1∕2� we have ob-
tained under the PNS attack, in which the secret information
Eve may steal from the two-photon state is 1/2 without con-
sidering her reception rate QBAE

μ,n�2. Based on the assumption of
GLLP, the value ofQBAE

μ,n�1 � QBA
μ − p�n ≥ 2, μ� − p�0, μ�Y A

0 −

p�1, μ�Y A
0 , QBAE

μ,n�2 � p�2, μ� − p�2, μ�Y A
0 , and QBAE

μ,n≥3 �
p�n ≥ 3, μ� − p�n ≥ 3, μ�Y A

0 in GLLP can be estimated by
combining the Eq. (A5) and the constraint of the first formula
of Eq. (11) for maximizing I(A:E).

D. Decoy-State Method
One way to beat the PNS attack in QKD is by utilizing decoy-
state method [31–33]. This method also can be integrated into
the DL04 QSDC [15], and we consider the decoy state here
only for detecting the PNS attack, leaving the problem of
whether it can be used to transmit secret information for future
work. More importantly, the decoy state can provide a better
estimation of the DBER. Bob randomly uses the signal source
or the decoy source to prepare the initial states and sends them
to Alice. Once these states are received by Alice, she randomly
chooses some of them to publicly discuss with Bob for eaves-
dropping detection that is the same as Step (2) in Section 2.A.
Bob announces where the decoy states are and then their trans-
mission properties would be tested by Alice. It is impossible for
Eve to discriminate which ones are the decoy states; in this way,
if Eve still performs the PNS attack in the forward quantum
channel, the counting rate of the system in path of BA will
be inevitably disturbed. If Alice and Bob confirm that the for-
ward quantum channel has not been tapped, Alice will use the
remaining signal states for information encoding.

Much of the decoy-state research in the Scarani-Acin-
Ribordy-Gisin 2004 (SARG 04) QKD protocol [57–60] has
shown how the decoy-state method can be used to estimate
the error rate caused by two photons. Inspired by these previous
works, we use four decoy states: one vacuum state and three
weak decoy states (ν1, ν2, and ν3) to estimate our eBA2 , so that
the background rate can be estimated by the vacuum state, i.e.,
Y A

0 � QBA
vac and e0 � EBA

vac � 1∕2. The upper bounds of single-
photon DBER and two-photon DBER are, respectively, given
by [60]

eBA,U1 � EBA
ν3 Q

BA
ν3 e

ν3 − e0Y A
0

Y A,L
1 ν3

, (17)

and

eBA,U2 �
2
	
EBA
ν2 Q

BA
ν2 e

ν2 − ν2
ν3
EBA
ν3 Q

BA
ν3 e

ν3 � ν2−ν3
ν3

e0Y A
0



Y A,L

2 ν2�ν2 − ν3�
,

(18)

where

Y A,L
1 � μ2�QBA

ν2 e
ν2 − QBA

ν3 e
ν3� − �ν22 − ν23��QBA

μ eμ − Y A
0 �

μ�ν2 − ν3��μ − ν2 − ν3�
,

(19)

and

Y A,L
2 � 2μ�QBA

ν1 e
ν1 − QBA

ν2 e
ν2� − 2�ν1 − ν2��QBA

μ eμ − Y A
0 �

μ�ν1 − ν2��ν1 � ν2 − μ�
:

(20)

Furthermore, the above mean photon numbers μ, ν1, ν2, and
ν3 meet the following conditions:

0 < ν3 < ν2 ≤
2

3
μ < ν1 ≤

3

4
μ,

ν1 � ν2 > μ,

ν2 � ν3 < μ,

ν1 − ν2 −
ν31 − ν

3
2

μ2
� 0: (21)

Results with explicit examples obtained from Eq. (15) are given
in Fig. 6.

E. Performance Analysis
The devices’ intrinsic optical losses are measured from our
experimental setup. There is an altogether loss of 4.3 dB
from PBS and PM. The attenuation of the short-arm optical
link of the Mach–Zehnder interferometer is 2.3 dB. Suppose
Eve’s detection efficiency is ηED � 100% and without back-
ground detection events, while Alice and Bob utilize the
superconducting single-photon detector with detection effi-
ciency ηAD � ηBD � 70% and background detection events
Y A

0 � Y B
0 � 8 × 10−8. γA � �1 − k� × 10−2.3∕10 × 70% and

γE � k × 10−4.3∕10 × k × 100%, where k originates from a
(1‒k):k BS. Then, the overall device intrinsic optical losses
of Alice and Bob are given by ηBAopt � �1 − k� × 10−2.3∕10 and
ηBAEopt � k2 × 10−6.6∕10, respectively. The intrinsic detector error
rates eBAdet � 1.31% and eBABdet � 0.26% are deduced from sys-
tem visibilities. Furthermore, the value of k is fixed by γA � γE.
We then performed a numerical simulation to estimate the
secrecy capacity under Eve’s attacks with this setup in terms
of maximum optical link attention.

Figure 5 shows the secrecy capacity of the free-space QSDC
system with different mean photon numbers given by the
GLLP theory. There is a trade-off between the secrecy capacity
and the maximum tolerable attenuation. The maximum toler-
able attenuation would be very small with the large mean pho-
ton numbers due to the high multi-photon probability in pulse,
and it is susceptible to the PNS attack. However, it is infeasible
to improve the maximum tolerable attenuation by reducing the
mean photon numbers drastically on account of the decrease
in the secrecy capacity. Hence, we choose the mean photon
number μ � 0.01 as the near-optimal value to highlight per-
formance, as this is its preferable performance both in the
secrecy capacity and in the maximum tolerable attenuation.
Consequently, as shown in Fig. 5, the channel attenuation
of secure communication against the collective attack as well
as the PNS and USD attack for the QSDC system with realistic
devices is less than 5.8 dB.

By contrast, as shown in Fig. 6, the secrecy capacity and
the maximum tolerable attenuation can be greatly increased
by using a decoy-state method. To be more specific, the maxi-
mum tolerable attenuation of decoy state method is 3.9 times
that of GLLP. The results show that the decoy state can accu-
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rately estimate the DBER caused by a single- and two-photon
state in which it plays a positive role in improving communi-
cation performance, rather than the GLLP theory that gives
a poor estimation. As seen in Fig. 6, the contribution of a
two-photon state to the secrecy capacity cannot be completely
disregarded, especially when the system is operated with a
comparatively higher mean photon number. For GLLP, there

is even no secrecy capacity at μ = 0.1 if the contribution of two-
photon components has not been considered.

In clear weather conditions, when the typical atmosphere
attenuation is 0.5–2 dB/km [61,62], it is feasible to exchange
secret information by free-space QSDC based on phase encod-
ing for two users over more than 1 km without using a decoy
state, which is a typical distance between two terminals in a
secure area. If the decoy-state method is applied, this secure
communication distance could be further improved. One typ-
ical usage scenario would be applied in indoor environments
for wireless communication, known as the quantum Li-Fi
system [63].

5. CONCLUSIONS

We have constructed a free-space QSDC system based on phase
encoding. The asymmetric Mach–Zehnder interferometers
serve as transmitter and receiver with convincing fringe visibil-
ities. The system can be operated to transmit text, picture, and
audio, with a low average QBER of 0.49%� 0.27%. This
indicates the feasibility of phase encoding–based QSDC over
a free-space channel. The security analysis of free-space
QSDC has been given under the general collective attack on
a single photon and the PNS attack on multi-photons, making
a beneficial step to calculate the secrecy capacity of the QSDC
system using a practical light source. Furthermore, the PNS
attack is a general strategy that is applicable in explaining
the previous PNS plus USD attack [56]. Our results show that
the DL04 QSDC protocol is robust against the PNS attack
in the depolarizing channel, and the secrecy capacity is in-
creased significantly after considering the security of two-
photon components, especially under the framework of a decoy
state. As for future investigation, the effects of background light
noise need to be considered in the free-space QSDC system.
Decreasing the intrinsic loss of optical setups and optimizing
the decoy-state method will be beneficial for long-distance
transmission of QSDC over a free-space channel. It is worth
mentioning that the phase drift of the photon must be carefully
handled by the free-space QSDC system with phase encoding.
Hence, the maximum communication distance of free-space
QSDC with phase-encoding needs to be further investigated.

APPENDIX A

We can estimate QBAE
μ,n from the value of QBA

μ,n, since they are
related to the number of photons received by Alice. For n pho-
tons emitted by Bob, Alice actually receives m photons at her
port BS after the forward quantum channel. The photon num-
ber distribution is f n � �m, μ�, which is no longer a Poissonian
distribution under the PNS attack. The yields of Alice and Eve
for these photons, are, respectively, given by

Y A
n − Y A

0 �
X∞
m�0

f n�m,μ�
�
1 −

�
1 − γA

�
m −

�
1 −

�
1 − γA

�
m


Y A

0

�

≈
X∞
m�0

f n�m,μ�
�
1 −

�
1 − γA

�
m



(A1)

and

Fig. 5. Secrecy capacities versus the attenuation given the collective
attack as well as the PNS and USD attack under the framework of
GLLP analysis. The curves labeled by different markers represent
the data with different mean photon numbers.

Fig. 6. Comparison of the secrecy capacities calculated by the
GLLP theory and the decoy-state method. Simulations in the de-
coy-state method using μ � 0.1, ν1 � 0.07, ν2 � 0.0445, and
ν3 � 0.03 and in the GLLP theory using μ � 0.1 are performed.
In the secrecy capacity Cs,1�2, we have considered the contribution
both from single-photon states and two-photon states, while Cs,1
has not considered the contribution from two-photon states. The
two yellow areas represent the contribution of two-photon states to
the secrecy capacity.
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Y E
n �

X∞
m�0

f n�m,μ�
�
1 −

�
1 − γE

�
m −

�
1 −

�
1 − γE

�
m


Y E

0

��Y E
0

≈
X∞
m�0

f n�m,μ�
�
1 −

�
1 − γE

�
m


, (A2)

where γA is the overall transmission for photons received and
then measured by Alice, γE is the overall transmission of Eve
after Alice encodes her receiving photons, and Y E

0 � 0.
Combining Eq. (A1) and Eq. (A2), the yield of Eve Y E

n be-
comes

Y E
n � �Y A

n − Y A
0 �

P∞
m�0 f n�m, μ�

�
1 −

�
1 − γE

�
m



P∞
m�0 f n�m, μ�

�
1 −

�
1 − γA

�
m



≤ �Y A
n − Y A

0 � max

�
1,

γE

γA

�
, (A3)

where we have utilized the following mathematical property8>>>><
>>>>:

P
∞
m�0

f n�m, μ�
�
1−
�
1−γE

�
m



P
∞
m�0

f n�m, μ�
�
1−
�
1−γA

�
m

 ≤ 1 if γA ≥ γE ,

P
∞
m�0

f n�m, μ�
�
1−
�
1−γE

�
m



P
∞
m�0

f n�m, μ�
�
1−
�
1−γA

�
m

 ≤ γE

γA
if γA < γE .

(A4)

The gains of the n-photon state of Alice and Eve are
QBA

μ,n � p�n, μ�Y A
n and QBAE

μ,n � p�n, μ�Y E
n , respectively.

Hence, we have

QBAE
μ,n � p

�
n, μ

�
Y E

n ≤
�
QBA

μ,n − p
�
n, μ

�
Y A

n


max

�
1,

γE

γA

�
.

(A5)
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