• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516020 (2022)
Haoyu Wang1、†, Xusheng Qiao†、*, and Xianping Fan
Author Affiliations
  • School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516020 Cite this Article Set citation alerts
    Haoyu Wang, Xusheng Qiao, Xianping Fan. Research Progress on Rare-Earth-Doped Ultraviolet Upconversion Materials and Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516020 Copy Citation Text show less
    References

    [1] Schomacker K T, Frisoli J K, Compton C C et al. Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential[J]. Lasers in Surgery and Medicine, 12, 63-78(1992).

    [2] Pease R F, Chou S Y. Lithography and other patterning techniques for future electronics[J]. Proceedings of the IEEE, 96, 248-270(2008).

    [3] Alaie Z, Nejad S M, Yousefi M H. Recent advances in ultraviolet photodetectors[J]. Materials Science in Semiconductor Processing, 29, 16-55(2015).

    [4] Yoshida H, Yamashita Y, Kuwabara M et al. A 342 nm ultraviolet AlGaN multiple-quantum-well laser diode[J]. Nature Photonics, 2, 551-554(2008).

    [5] Susilo N, Hagedorn S, Jaeger D et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire[J]. Applied Physics Letters, 112, 041110(2018).

    [6] Sadaf S M, Zhao S, Wu Y et al. An AlGaN core-shell tunnel junction nanowire light-emitting diode operating in the ultraviolet-C band[J]. Nano Letters, 17, 1212-1218(2017).

    [7] Zhang Q W, Yue S S, Sun H Q et al. Nondestructive up-conversion readout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications[J]. Journal of Materials Chemistry C, 5, 3838-3847(2017).

    [8] Zhang X, Serrano C, Daran E et al. Infrared-laser-induced upconversion from Nd3+∶LaF3 heteroepitaxial layers on CaF2(111) substrates by molecular beam epitaxy[J]. Physical Review B, 62, 4446-4454(2000).

    [9] Boardman E, Huang L, Robson-Hemmings J et al. Deep ultraviolet (UVC) laser for sterilisation and fluorescence applications[J]. Sharp Technical Report, 104, 31-35(2012).

    [10] Shin J Y, Kim S J, Kim D K et al. Fundamental characteristics of deep-UV light-emitting diodes and their application to control foodborne pathogens[J]. Applied and Environmental Microbiology, 82, 2-10(2015).

    [11] El-Agmy R M. Upconversion CW laser at 284 nm in a Nd∶ YAG-pumped double-cladding thulium-doped ZBLAN fiber laser[J]. Laser Physics, 18, 803-806(2008).

    [12] Huang F, Lou Q H, Yu T Y et al. Tunable solid state UV laser[J]. Optics & Laser Technology, 33, 111-115(2001).

    [13] Perlov D, Livneh S, Czechowicz P et al. Progress in growth of large β-BaB2O4 single crystals[J]. Crystal Research and Technology, 46, 651-654(2011).

    [14] Liu Q, Wang F, Hong H L et al. Investigation of UV laser-induced damage by precursors at the surface of LBO crystal[J]. Journal of the Optical Society of America B, 31, 189-194(2014).

    [15] Wang L R, Wu Y, Wang G L et al. 31.6-W, 355-nm generation with La2CaB10O19 crystals[J]. Applied Physics B, 108, 307-311(2012).

    [16] Ben Y H, Liang F, Zhao D G et al. Different influence of InGaN lower waveguide layer on the performance of GaN-based violet and ultraviolet laser diodes[J]. Superlattices and Microstructures, 133, 106208(2019).

    [17] Li D B, Jiang K, Sun X J et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 10, 43-110(2018).

    [18] Chen X, Jin L M, Kong W et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing[J]. Nature Communications, 7, 10304(2016).

    [19] Jin L M, Wu Y K, Wang Y J et al. Mass-manufactural lanthanide-based ultraviolet B microlasers[J]. Advanced Materials, 31, 1807079(2019).

    [20] Du Y Y, Wang Y F, Deng Z Q et al. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals[J]. Advanced Optical Materials, 8, 1900968(2020).

    [21] Xu X H, Lu W, Wang T et al. Deep UV random lasing from NaGdF4∶Yb3+, Tm3+ upconversion nanocrystals in amorphous borosilicate glass[J]. Optics Letters, 45, 3095-3098(2020).

    [22] Wang T, Liu B T, Lin Y et al. Ultraviolet C lasing at 263 nm from Ba2LaF7∶Yb3+, Tm3+ upconversion nanocrystal microcavities[J]. Optics Letters, 45, 5986-5989(2020).

    [23] Auzel F E. Materials and devices using double-pumped-phosphors with energy transfer[J]. Proceedings of the IEEE, 61, 758-786(1973).

    [24] Auzel F, Pecile D. Radiation transfer between Yb3+ in mechanism for anti-stokes fluorescence of matrices doped with Yb3+-Er3+[J]. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B, 277, 155-157(1973).

    [25] Bloembergen N. Solid state infrared quantum counters[J]. Physical Review Letters, 2, 84-85(1959).

    [26] Su J, Zhang Z H, Zhao H F et al. Up-conversion luminescence properties of Yb3+/Tm3+ co-doped silicate glasses[J]. Chinese Journal of Luminescence, 37, 526-531(2016).

    [27] Auzel F, Pecile D, Morin D. Rare earth doped vitroceramics, new efficient, blue and green emitting materials for infrared up-conversion[J]. Journal of the Electrochemical Society, 122, 101-107(1975).

    [28] Chivian J S, Case W E, Eden D D. The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters[J]. Applied Physics Letters, 35, 124-125(1979).

    [29] Wang F, Deng R R, Wang J et al. Tuning upconversion through energy migration in core-shell nanoparticles[J]. Nature Materials, 10, 968-973(2011).

    [30] Dong H, Sun L D, Yan C H. Energy transfer in lanthanide upconversion studies for extended optical applications[J]. Chemical Society Reviews, 44, 1608-1634(2015).

    [31] Liang H J. The enhancement and the spectroscopic investigation of upconversion emissions in rear earth doped oxide and fluoride nanocrystals[D], 1-14(2011).

    [32] Chen G Y, Yang C H, Aghahadi B et al. Ultraviolet-blue upconversion emissions of Ho3+ ions[J]. Journal of the Optical Society of America B, 27, 1158-1164(2010).

    [33] Zheng K Z, Liu Z Y, Zhao D et al. Infrared to ultraviolet upconversion fluorescence of Gd3+ in β-NaYF4 microcrystals induced by 1560 nm excitation[J]. Optical Materials, 33, 783-787(2011).

    [34] Shi F, Zhao Y. Sub-10 nm and monodisperse β-NaYF4: Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence[J]. Journal of Materials Chemistry C, 2, 2198-2203(2014).

    [35] Qin W P, Cao C Y, Wang L L et al. Ultraviolet upconversion fluorescence from 6D(J) of Gd3+ induced by 980 nm excitation[J]. Optics Letters, 33, 2167-2169(2008).

    [36] Galleani G, Santagneli S H, Ledemi Y et al. Ultraviolet upconversion luminescence in a highly transparent triply-doped Gd3+-Tm3+-Yb3+ fluoride-phosphate glasses[J]. Journal of Physical Chemistry C, 122, 2275-2284(2018).

    [37] Yin Z Q, Lü P S, Zhu Z et al. Sunlight-excited inorganic UVC upconversion luminescent materials[J]. Laser & Optoelectronics Progress, 58, 1516013(2021).

    [38] Wang X S, Qiu J R, Song J et al. Simultaneous three-photon absorption induced ultraviolet upconversion in Pr3+: Y2SiO5 crystal by femtosecond laser irradiation[J]. Optics Communications, 281, 299-302(2008).

    [39] Qin F, Zheng Y D, Yu Y et al. Ultraviolet upconversion luminescence in Er3+-doped Y2O3 excited by 532 nm CW compact solid-state laser[J]. Journal of Luminescence, 129, 1137-1139(2009).

    [40] Qin F, Zheng Y D, Yu Y et al. Ultraviolet and violet upconversion luminescence in Ho3+-doped Y2O3 ceramic induced by 532-nm CW laser[J]. Journal of Alloys and Compounds, 509, 1115-1118(2011).

    [41] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chemical Reviews, 104, 139-173(2004).

    [42] Qin F, Zhao H, Lv M Y et al. Precise determination on the upconversion processes of the ultraviolet upconversion fluorescence of Ho3+-doped Y2O3 ceramic by excitation of a 532-nm continuous-wave laser[J]. Optics Letters, 42, 2279-2282(2017).

    [43] Yang H G, Dai Z W, Sun Z W. Upconversion luminescence and kinetics in Er3+∶YAlO3 under 652.2 nm excitation[J]. Journal of Luminescence, 124, 207-212(2007).

    [44] Qin F, Zheng Y D, Yu Y et al. Ultraviolet upconversion luminescence of Gd3+ from Ho3+ and Gd3+ codoped oxide ceramic induced by 532-nm CW laser excitation[J]. Optics Communications, 284, 3114-3117(2011).

    [45] Georgescu S, Voiculescu A M, Matei C et al. Upconversion luminescence in langatate ceramics doped with Tm3+ and Yb3+[J]. Journal of Luminescence, 154, 74-79(2014).

    [46] Yu Y, Zheng Y D, Cheng Z M et al. Ultraviolet emissions from Gd3+ ions excited by energy transfer from Ho3+ ions[J]. Journal of Luminescence, 131, 347-351(2011).

    [47] Su Q Q, Wei H L, Liu Y C et al. Six-photon upconverted excitation energy lock-in for ultraviolet-C enhancement[J]. Nature Communications, 12, 4367(2021).

    [48] Xu X, Long J, Zeng Y et al. Synthesis and intense ultraviolet to visible upconversion luminescence of YF3∶ Ho3+ nanoparticles[J]. Journal of Fluorine Chemistry, 187, 24-32(2016).

    [49] Zhang Y T, Shen Y L, Liu M et al. Enhanced high-order ultraviolet upconversion luminescence in sub-20 nm beta-NaYbF4∶0.5% Tm nanoparticles via Fe3+ doping[J]. Crystengcomm, 19, 1304-1310(2017).

    [50] del-Castillo J, Méndez-Ramos J, Acosta-Mora P et al. Upconversion photonics in solvothermal Sr2YbF7∶Tm3+@Sr2YF7 core-shell nanocrystals for enhanced photocatalytic degradation of pollutants[J]. Journal of Luminescence, 241, 118490(2022).

    [51] Gao D L, Liang Y Q, Gao J et al. Simultaneous luminescence enhancement and lifetime tuning of deep UV-NIR upconversion through controlling dopant concentration[J]. Journal of Luminescence, 238, 118261(2021).

    [52] Yang Y M, Mi C, Su X Y et al. Ultraviolet C upconversion fluorescence of trivalent erbium in BaGd2ZnO5 phosphor excited by a visible commercial light-emitting diode[J]. Optics Letters, 39, 2000-2003(2014).

    [53] Sin C, Aidilibike T, Qin W P et al. Mechanism of ultraviolet upconversion luminescence of Gd3+ ions sensitized by Yb3+-clusters in CaF2∶Yb3+, Gd3+[J]. Journal of Luminescence, 194, 72-74(2018).

    [54] Gupta S K, Garcia M A P, Zuniga J P et al. Visible and ultraviolet upconversion and near infrared downconversion luminescence from lanthanide doped La2Zr2O7 nanoparticles[J]. Journal of Luminescence, 214, 116591(2019).

    [55] Zheng K Z, Qin W P, Cao C Y et al. NIR to VUV: seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals[J]. The Journal of Physical Chemistry Letters, 6, 556-560(2015).

    [56] Wang M K, Wei H L, Wang S et al. Dye sensitization for ultraviolet upconversion enhancement[J]. Nanomaterials, 11, 3114(2021).

    [57] Zhang L L. Basic researches on visible and near infrared laser glasses[D], 1-10(2014).

    [58] Lai B, Wang J, Su Q. Ultraviolet and visible upconversion emission in Tb3+/Yb3+ co-doped fluorophosphate glasses[J]. Applied Physics B, 98, 41-47(2010).

    [59] Yang H G, Gao J S. Different dynamics of ultraviolet upconversion in Tm3+∶ZBLAN glass under blue laser excitation[J]. Physica B: Condensed Matter, 426, 31-34(2013).

    [60] Pannhorst W. Glass ceramics: state-of-the-art[J]. Journal of Non-Crystalline Solids, 219, 198-204(1997).

    [61] del-Castillo J, Yanes A C. Ultraviolet and visible up-conversion in sol-gel based SiO2-BaY0.78-xGdxYb0.2Tm0.02F5 nano-glass-ceramics[J]. Optical Materials, 84, 1-7(2018).

    [62] de Lima Rezende T K, Pereira Barbosa H, de Oliveira Lima K et al. Simultaneous excitation at IR and UV of RE3+ triply doped SiO2-Gd2O3 materials for energy conversion purposes[J]. Ceramics International, 47, 35187-35200(2021).

    [63] Li J F, Wang X L, Yang H G et al. Ultraviolet upconversion emission from ZBLAN glass doped with Tm3+ ions[J]. Physica B: Condensed Matter, 392, 251-254(2007).

    [64] Qin J J, Huang Y T, Xu C H et al. Multiple luminescence spanning the UV to NIR regions of Tm3+-doped silica glass microspheres pumped by 1527 nm[J]. Journal of Luminescence, 213, 46-50(2019).

    [65] Qiao X S, Fan X P, Xue Z et al. Intense ultraviolet upconversion luminescence of Yb3+ and Tb3+ co-doped glass ceramics containing SrF2 nanocrystals[J]. Journal of Luminescence, 131, 2036-2041(2011).

    [66] Georgescu S, Voiculescu A M, Matei C et al. Ultraviolet and visible up-conversion luminescence of Er3+/Yb3+ co-doped CaF2 nanocrystals in Sol-gel derived glass-ceramics[J]. Journal of Luminescence, 143, 150-156(2013).

    [67] Jiang S, Guo H, Wei X T et al. Enhanced upconversion in Ho3+-doped transparent glass ceramics containing BaYbF5 nanocrystals[J]. Journal of Luminescence, 152, 195-198(2014).

    [68] Layne C B, Lowdermilk W H, Weber M J. Multiphonon relaxation of rare-earth ions in oxide glasses[J]. Physical Review B, 16, 10-20(1977).

    [69] Scheps R. Upconversion laser processes[J]. Progress in Quantum Electronics, 20, 271-358(1996).

    [70] Chen X B, Zhang G Y, Mao Y H et al. Research on the up-conversion luminescence of Tm3+ ion in crystal and amorphous pentaphosphate materials[J]. Journal of Luminescence, 69, 151-160(1996).

    [71] Li Z Y. The hydrothermal synthesis and deep-ultraviolet lasing properties of ErF3 upconversion nanocrystals[D], 9-15(2019).

    [72] Wen S H, Zhou J J, Zheng K Z et al. Advances in highly doped upconversion nanoparticles[J]. Nature Communications, 9, 2415(2018).

    [73] Johnson N J J, He S, Diao S et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. Journal of the American Chemical Society, 139, 3275-3282(2017).

    [74] Dawson P, Romanowski M. Designing ultraviolet upconversion for photochemistry[J]. Journal of Luminescence, 222, 117143(2020).

    [75] Zhao J B, Jin D Y, Schartner E P et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence[J]. Nature Nanotechnology, 8, 729-734(2013).

    [76] Xu H L, Kröll S. Upconversion dynamics in Er3+-dopeYAG[J]. Journal of Luminescence, 111, 191-198(2005).

    [77] Deng R R, Qin F, Chen R F et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 10, 237-242(2015).

    [78] Dawson P, Romanowski M. Excitation modulation of upconversion nanoparticles for switch-like control of ultraviolet luminescence[J]. Journal of the American Chemical Society, 140, 5714-5718(2018).

    [79] Foreman M R, Swaim J D, Vollmer F. Whispering gallery mode sensors[J]. Advances in Optics and Photonics, 7, 168-240(2015).

    [80] van Duong Ta, Rui C, Lin M et al. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber[J]. Laser & Photonics Reviews, 7, 133-139(2013).

    Haoyu Wang, Xusheng Qiao, Xianping Fan. Research Progress on Rare-Earth-Doped Ultraviolet Upconversion Materials and Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516020
    Download Citation