• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516020 (2022)
Haoyu Wang1、†, Xusheng Qiao†、*, and Xianping Fan
Author Affiliations
  • School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516020 Cite this Article Set citation alerts
    Haoyu Wang, Xusheng Qiao, Xianping Fan. Research Progress on Rare-Earth-Doped Ultraviolet Upconversion Materials and Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516020 Copy Citation Text show less
    Mechanism of upconversion process. (a) ESA; (b) ETU; (c) CET; (d) PA; (e) EMU
    Fig. 1. Mechanism of upconversion process. (a) ESA; (b) ETU; (c) CET; (d) PA; (e) EMU
    Gd-CSYS2S3 core-shell nanocrystal. (a) Structure diagram; (b) HAADF-STEM and HR-TEM image; (c) UV upconversion emission spectra under 808 nm continuouswave laser[47]
    Fig. 2. Gd-CSYS2S3 core-shell nanocrystal. (a) Structure diagram; (b) HAADF-STEM and HR-TEM image; (c) UV upconversion emission spectra under 808 nm continuouswave laser[47]
    Ba2LaF7∶Yb3+/Tm3+ nanocrystal. (a) TEM image; (b) corresponding size distribution[22]
    Fig. 3. Ba2LaF7∶Yb3+/Tm3+ nanocrystal. (a) TEM image; (b) corresponding size distribution[22]
    Relationship between the multiphonon nonradiative relaxation rate of rare earth ions and the energy gap in materials with different average phonon energies[68]
    Fig. 4. Relationship between the multiphonon nonradiative relaxation rate of rare earth ions and the energy gap in materials with different average phonon energies[68]
    Energy transfer process of Gd-CSYS2S3@IR-806 under 808 nm laser excitation [56]
    Fig. 5. Energy transfer process of Gd-CSYS2S3@IR-806 under 808 nm laser excitation [56]
    Upconversion spectra changes of 1% Tm3+ under excitation power of 104 W·cm-2 and 2.5×106 W·cm-2 [75]
    Fig. 6. Upconversion spectra changes of 1% Tm3+ under excitation power of 104 W·cm-2 and 2.5×106 W·cm-2 [75]
    Upconversion luminescence of Tm3+ under 464 nm laser excitation. (a) Upconversion energy level diagram; (b) upconversion spectrum [59]
    Fig. 7. Upconversion luminescence of Tm3+ under 464 nm laser excitation. (a) Upconversion energy level diagram; (b) upconversion spectrum [59]
    Upconversion luminescence behavior of Ho3+ ions at different pulse widths and the curves of upconversion luminescence intensity with time in a pulse at different wavelengths[77]
    Fig. 8. Upconversion luminescence behavior of Ho3+ ions at different pulse widths and the curves of upconversion luminescence intensity with time in a pulse at different wavelengths[77]
    Upconversion emission intensity at 311 nm of the NaYF4 @ NaYbF4∶Tm/Gd NaYF4 nanoparticles as a function of excitation power for different excitation schemes[18]
    Fig. 9. Upconversion emission intensity at 311 nm of the NaYF4 @ NaYbF4∶Tm/Gd NaYF4 nanoparticles as a function of excitation power for different excitation schemes[18]
    Experimental results. (a) Spectra of ultraviolet upconversion laser; (b) power-intensity curve of the cylindrical microcavity; (c) stability measurement of the cylindrical microcavity[22]
    Fig. 10. Experimental results. (a) Spectra of ultraviolet upconversion laser; (b) power-intensity curve of the cylindrical microcavity; (c) stability measurement of the cylindrical microcavity[22]
    Microlaser array. (a) Preparation process; (b) (c) TEM images [19]
    Fig. 11. Microlaser array. (a) Preparation process; (b) (c) TEM images [19]
    Experimental results. (a) UV emission spectra of 300 nm WGMs; (b) P-I curve corresponding to Fig.(a); (c) computer simulation of loss of WGMs to light of different wavelengths; (d) UV emission spectra of 130 nm WGMs; (e) P-I curve corresponding to Fig. (d); (f) loss of WGMs of different thicknesses to light of different wavelengths [19]
    Fig. 12. Experimental results. (a) UV emission spectra of 300 nm WGMs; (b) P-I curve corresponding to Fig.(a); (c) computer simulation of loss of WGMs to light of different wavelengths; (d) UV emission spectra of 130 nm WGMs; (e) P-I curve corresponding to Fig. (d); (f) loss of WGMs of different thicknesses to light of different wavelengths [19]
    ZBLAN upconversion fiber laser. (a) Schematic; (b) schematic diagram of the upconversion energy level of Tm3+ under the excited of 1064 nm laser[11]
    Fig. 13. ZBLAN upconversion fiber laser. (a) Schematic; (b) schematic diagram of the upconversion energy level of Tm3+ under the excited of 1064 nm laser[11]
    ActivatorHostExcitation /nmEmission /nmCorresponding transitionRef.
    Pr3+Pr3+∶Y2SiO5 single crystal800

    270

    305

    4f5d→3H4,5,6

    4f5d→3F2,3

    38
    Er3+Er3+∶YAlO3 single crystal6523382H9/24I13/243
    Er3+Y2O3 ceramic532

    262

    276

    320

    4D5/24I15/2

    2H9/24I15/2

    2P3/24I15/2

    39
    Ho3+Y2O3 ceramic532

    306

    362

    3D35I8

    3D35I7

    4042
    Ho3+/Gd3+Y2O3 ceramic5323156PJ8S7/244
    Yb3+/Tm3+Langatate ceramic9733651D23H645
    Yb3+/Ho3+/Gd3+Y2O3 ceramic976

    309

    315

    6P5/28S7/2

    6P7/28S7/2

    46
    Table 1. UV upconversion luminescent crystals and transparent ceramics
    ActivatorHostExcitation /nmEmission /nmCorresponding transitionRef.
    Ho3+YF3 NCs4502885D45I848
    Yb3+/Tm3+NaYbF4 NCs980

    291

    345

    1I63H6

    1I63F4

    49
    Yb3+/Tm3+LiYbF4 NCs9802891I63H619
    Yb3+/Tm3+Sr2YbF7 NCs9802901I63H650
    Yb3+/Tm3+NaYbF4 NCs9802901I63H651
    Yb3+/Ho3+NaYF4 NCs970

    247

    277

    287

    3F,5D)45I8

    3H,5D,1G)45I8

    5G,5D,3G)→5I8

    32
    Er3+/Gd3+BaGd2ZnO5 NCs532

    217

    254

    278

    4D1/28S7/2

    4D7/28S7/2

    2H9/28S7/2

    52
    Pr3+/Gd3+Lu6O5F8 NCs4503156P7/28S7/220
    Yb3+/Gd3+CaF2 NCs9803156P7/28S7/253
    Yb3+/Er3+/Gd3+NaYF4 NCs1560

    277

    306

    311

    6IJ8S7/2

    6P5/28S7/2

    6P7/28S7/2

    33
    Yb3+/Tm3+/Gd3+La2Zr2O7 NCs980

    265

    289

    6IJ8S7/2

    3P03H6

    54
    Yb3+/Tm3+/Gd3+YF3 NCs980

    204

    195

    6G7/28S7/2

    6G13/28S7/2

    55
    Yb3+/Tm3+/Gd3+NaYF4 NCs980

    277

    305

    311

    6IJ8S7/2

    6P5/28S7/2

    6P7/28S7/2

    34-36
    Nd3+/Yb3+/Tm3+/Gd3+Gd-CSYS2S3 NCs808

    311

    290

    273

    253

    6P7/28S7/2

    1I63H6

    6IJ8S7/2

    6DJ8S7/2

    4756
    Table 2. UV upconversion luminescent nanocrystals
    ActivatorHostExcitation /nmEmission /nmCorresponding transitionRef.
    Tm3+ZBLAN455

    292

    350

    363

    1I63H6

    1I63F4

    1D23H6

    59
    Tm3+ZBLAN4583661D23H663
    Tm3+ZBLAN1064

    365

    284

    1D23H6

    1I63H6

    11
    Tm3+Silica glass microspheres15273731D23H664
    Yb3+/Tb3+Fluorophosphate glass9803795D37F658
    Yb3+/Tb3+Oxyfluoride GC9803825D35G6)→7F665
    Yb3+/Er3+Oxyfluoride GC9733804G11/24I15/266
    Yb3+/Ho3+Oxyfluoride GC9803625G5/3H65I867
    Yb3+/Tm3+Oxyfluoride GC9802633P1,03H622
    Yb3+/Tm3+/Gd3+Oxyfluoride GC980

    311

    277

    253

    6P7/28S7/2

    6IJ8S7/2

    6DJ8S7/2

    61
    Yb3+/Tm3+/Gd3+Oxyfluoride GC980

    293

    277

    1I63H6

    6IJ8S7/2

    21
    Yb3+/Er3+/Gd3+/Eu3+Oxide GC9802486DJ8S7/262
    Table 3. UV upconversion luminescent glass and glass ceramics
    ActivatorHostLaser resonatorLaser emission /nmLaser thresholdOutput power /μWSlope efficiency /%Quality factorRef.
    Tm3+ZBLANFiber Laser284200 mW42911
    Yb3+/Tm3+/Gd3+NaYF4 NCsWGM31186 mJ/cm2280018
    Yb3+/Tm3+LiYbF4 NCsWGM2897.42 mJ/cm2480019
    Pr3+/Gd3+Lu6O5F8 NCsRL31589.7 mJ/cm220
    Yb3+/Tm3+/Gd3+Oxyfluoride GCRL290141 mJ/cm221
    Yb3+/Tm3+Oxyfluoride GCRL26380 mJ/cm222
    Table 4. Ultraviolet upconversion laser material
    Haoyu Wang, Xusheng Qiao, Xianping Fan. Research Progress on Rare-Earth-Doped Ultraviolet Upconversion Materials and Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516020
    Download Citation