• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0116004 (2024)
Mingxia Xu1、†, Haohai Yu†、*, Dazhi Lu, Xun Sun**, Xinguang Xu, and Huaijin Zhang
Author Affiliations
  • State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong , China
  • show less
    DOI: 10.3788/LOP232438 Cite this Article Set citation alerts
    Mingxia Xu, Haohai Yu, Dazhi Lu, Xun Sun, Xinguang Xu, Huaijin Zhang. Research Progress in Nonlinear Optical Crystals for High-Power Laser (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116004 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [3] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).

    [4] Stolzenberger R A. Nonlinear optical properties of flux growth KTiOPO4[J]. Applied Optics, 27, 3883-3886(1988).

    [5] Eimerl D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs[J]. Ferroelectrics, 72, 95-139(1987).

    [6] Wei X F, Zhang X M, Sui Z et al. Experimental research on efficient frequency doubling using a large aperture KDP crystal[J]. Chinese Journal of Lasers, 17, 737-740(1990).

    [7] Su G B, Zeng J B, He Y P et al. Application of large section KDP crystals in the study of laser fusion[J]. Journal of the Chinese Ceramic Society, 25, 717-719(1997).

    [8] Shao J D, Dai Y P, Xu Q. Progress on optical components for ICF laser facility[J]. Optics and Precision Engineering, 24, 2889-2895(2016).

    [9] De Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser[J]. International Materials Reviews, 47, 113-152(2002).

    [10] Baisden P A, Atherton L J, Hawley R A et al. Large optics for the national ignition facility[J]. Fusion Science and Technology, 69, 295-351(2016).

    [11] Xu M X, Liu B A, Zhang L S et al. Progress on deuterated potassium dihydrogen phosphate (DKDP) crystals for high power laser system application[J]. Light: Science & Applications, 11, 241(2022).

    [12] Phillips J P, Banerjee S, Smith J et al. High energy, high repetition rate, second harmonic generation in large aperture DKDP, YCOB, and LBO crystals[J]. Optics Express, 24, 19682-19694(2016).

    [13] Chen C T, Wu B C, Jiang A D et al. A new-type ultraviolet SHG crystal β-BaB2O4[J]. Scientia Sinica B, 28, 235-243(1985).

    [14] Chen C T, Wu Y C, Jiang A D et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 6, 616-621(1989).

    [15] Nikogosyan D N[M]. Nonlinear optical crystals: a complete survey(2005).

    [16] Hu Z G, Wu Y C. Review of the research on the nonlinear optical crystal: LiB3O5[J]. Materials China, 29, 12-17(2010).

    [17] Pan Z B, Zhang H J, Yu H H et al. Czochralski growth of large aperture YCOB crystal[J]. Journal of the Chinese Ceramic Society, 41, 55-57(2013).

    [18] Tu X N, Wang S, Xiong K N et al. Research on growth and defects of 5 in. YCOB single crystal[J]. Journal of Crystal Growth, 488, 23-28(2018).

    [19] Tu X N, Zheng Y Q, Xiong K N et al. Crystal growth and characterization of 4 in. YCa4O(BO3)3 crystal[J]. Journal of Crystal Growth, 401, 160-163(2014).

    [20] Zheng W G, Qi H J. An exclusive interview with ZHENG wanguo on the “ignition” milestone in human history[J]. Journal of Synthetic Crystals, 52, 1-7(2023).

    [21] Pan Z B. Development of the key borate crystals for OPCPA technique[D], 16-26(2013).

    [22] Tu X N, Xiong K N, Wang S et al. Large size Sm-doped YCOB crystal grown by Bridgman method for QPCPA application[J]. Journal of Crystal Growth, 535, 125543(2020).

    [23] Chai B H T, Eichenholz J M, Ye Q et al. Self-frequency doubled Nd∶YCOB laser[C], VL5(1998).

    [24] Chai B H T, Hammonc A, Eichenholz J M et al. Lasing, second harmonic conversion and self-frequency doubling of Yb∶YCOB(Yb∶YCa4B3O10)[C], VL6(1998).

    [25] Lu D Z, Fang Q N, Yu H H et al. Yb∶YCOB self-frequency-doubled yellow laser crystal and device[J]. Journal of the Chinese Ceramic Society, 49, 246-249(2021).

    [26] Cui C. Study on phase matching of optically active nonlinear crystals and mid-infrared difference frequency performance of lanthanum gallium niobate crystals[D], 16-21(2022).

    [27] Wang J Y, Lu D Z, Yu H H et al. Langasite family nonlinear optical crystals[J]. Acta Physico-Chimica Sinica, 36, 1907009(2020).

    [28] Cui C, Lu D Z, Liang F et al. Mid-infrared pulsed nanosecond difference frequency generation of oxide LGN crystal up to 5.7 µm[J]. Optics Letters, 46, 785-788(2021).

    [29] Liu J S, Ma J G, Wang J et al. Toward 5.2 µm terawatt few-cycle pulses via optical parametric chirped-pulse amplification with oxide La3Ga5.5Nb0.5O14 crystals[J]. High Power Laser Science and Engineering, 7, e61(2019).

    [30] Lu D Z, Xu T X, Yu H H et al. Acentric langanite La3Ga5.5Nb0.5O14 crystal: a new nonlinear crystal for the generation of mid-infrared parametric light[J]. Optics Express, 24, 17603-17615(2016).

    [31] Xu M X, Sun X, Wang Z P et al. Laser-induced damage of DKDP crystal under different wavelengths[J]. Crystal Research and Technology, 45, 763-766(2010).

    [32] Lu Z K, Gao Z S, Li Y P et al. Growth of large-size KDP crystal by solution circulating flow method[J]. Journal of Synthetic Crystals, 25, 19-22(1996).

    [33] Zaitseva N, Carman L. Rapid growth of KDP-type crystals[J]. Progress in Crystal Growth and Characterization of Materials, 43, 1-118(2001).

    [34] Sun S T, Ji L L, Wang Z P et al. Effects of raw material on the growth habit and optical properties of DKDP crystal[J]. Journal of Synthetic Crystals, 38, 539-543(2009).

    [35] Sun S T, Ji L L, Wang Z P et al. Effects of growth method on the growth habit and optical property of DKDP crystals[J]. Journal of the Chinese Ceramic Society, 37, 1914-1918(2009).

    [36] Sun S T, Ji L L, Wang Z P et al. Study on the growth habit and optical property of DKDP crystal grown by different seed[J]. Journal of Functional Materials, 40, 1955-1957(2009).

    [37] Xu M X, Zhang L S, Liu F F et al. Effect of deuterium content on the optical properties of DKDP crystals[J]. Crystal Research and Technology, 53, 1700298(2018).

    [38] Nakatsuka M, Fujioka K, Kanabe T et al. Rapid growth over 50 mm/day of water-soluble KDP crystal[J]. Journal of Crystal Growth, 171, 531-537(1997).

    [39] Zaitseva N P, De Yoreo J J, Dehaven M R et al. Rapid growth of large-scale (40-55 cm) KH2PO4 crystals[J]. Journal of Crystal Growth, 180, 255-262(1997).

    [40] Hawley-Fedder R, Robey H, Biesiada T et al. Rapid growth of very large KDP and KD*P crystals in support of the national ignition facility[J]. Proceedings of SPIE, 4102, 152-161(2000).

    [41] Zhuang X X, Ye L W, Zheng G Z et al. The rapid growth of large-scale KDP single crystal in brief procedure[J]. Journal of Crystal Growth, 318, 700-702(2011).

    [42] Li G H, Zheng G Z, Qi Y K et al. Rapid growth of a large-scale (600 mm aperture) KDP crystal and its optical quality[J]. High Power Laser Science and Engineering, 2, e2(2014).

    [43] Zhang L Y, Wang S L, Liu H et al. Research progress of oversized KDP/DKDP crystals[J]. Journal of Synthetic Crystals, 50, 724-731(2021).

    [44] Zaitseva N, Atherton J, Rozsa R et al. Design and benefits of continuous filtration in rapid growth of large KDP and DKDP crystals[J]. Journal of Crystal Growth, 197, 911-920(1999).

    [45] Zhang L S, Yu G W, Zhou H L et al. Study on rapid growth of 98% deuterated potassium dihydrogen phosphate (DKDP) crystals[J]. Journal of Crystal Growth, 401, 190-194(2014).

    [46] Zhang L S, Zhang F, Xu M X et al. Rapid growth of a large size, highly deuterated DKDP crystal and its efficient noncritical phase matching fourth-harmonic-generation of a Nd∶YAG laser[J]. RSC Advances, 5, 74858-74863(2015).

    [47] Cai X M, Lin X Q, Li G H et al. Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals[J]. High Power Laser Science and Engineering, 7, e46(2019).

    [48] Chen D Y, Wang B, Wang H et al. Investigation of the pyramid-prism boundary of a rapidly grown KDP crystal[J]. CrystEngComm, 21, 1482-1487(2019).

    [49] Xu L Y, Lu C W, Wang S L et al. A study on nonlinear absorption uniformity in a KDP crystal at 532 nm[J]. CrystEngComm, 22, 5338-5344(2020).

    [50] Ji S H, Li F Q, Wang F et al. Homogeneity of rapid grown DKDP crystal[J]. Optical Materials Express, 4, 997-1002(2014).

    [51] Chai X X, Wang F, Feng B et al. Deuterium homogeneity investigation of large-size DKDP crystal[J]. Optical Materials Express, 8, 1193-1201(2018).

    [52] Chai X X, Li P, Wang G Z et al. Research on the growth interfaces of pyramidal and prismatic sectors in rapid grown KDP and DKDP crystals[J]. Optical Materials Express, 9, 4605-4613(2019).

    [53] Zaitseva N, Carman L, Smolsky I. Habit control during rapid growth of KDP and DKDP crystals[J]. Journal of Crystal Growth, 241, 363-373(2002).

    [54] Liu F F, Yu G W, Zhang L S et al. Effect of supersaturation on hillock of directional growth of KDP crystals[J]. Scientific Reports, 4, 6886(2014).

    [55] Chen D Y, Wang B, Wang H et al. Rapid growth of a cuboid DKDP (KDxH2-xPO4) crystal[J]. Crystal Growth & Design, 19, 2746-2750(2019).

    [56] Sastry B S R, Hummel F A. Studies in lithium oxide systems: I, Li2O B2O3-B2O3[J]. Journal of the American Ceramic Society, 41, 7-17(1958).

    [57] König H, Hoppe R. Über borati der alkalimetalle. II. zur kenntnis von LiB3O5[1[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 439, 71-79(1978).

    [58] Shumov D P, Nikolov V S, Nenov A T. Growth of LiB3O5 single crystals in the Li2O-B2O3 system[J]. Journal of Crystal Growth, 144, 218-222(1994).

    [59] Markgraf S A, Furukawa Y, Sato M. Top-seeded solution growth of LiB3O5[J]. Journal of Crystal Growth, 140, 343-348(1994).

    [60] Kima H G, Kang J K, Lee S H et al. Growth of lithium triborate crystals by the TSSG technique[J]. Journal of Crystal Growth, 187, 455-462(1998).

    [61] Zhao S Q, Huang C E, Zhang H W. Crystal growth and properties of lithium triborate[J]. Journal of Crystal Growth, 99, 805-810(1990).

    [62] Kim J W, Yoon C S, Gallagher H G. The effect of NaCl melt-additive on the growth and morphology of LiB3O5 (LBO) crystals[J]. Journal of Crystal Growth, 222, 760-766(2001).

    [63] Hao Z W, Ma X M. Growth of high quality nonlinear optical crystal LBO by flux method[J]. Journal of Synthetic Crystals, 31, 124-126(2002).

    [64] Parfeniuk C, Samarasekera I V, Weinberg F. Growth of lithium triborate crystals. I. mathematical model[J]. Journal of Crystal Growth, 158, 514-522(1996).

    [65] Pylneva N A, Kononova N G, Yurkin A M et al. Growth and non-linear optical properties of lithium triborate crystals[J]. Journal of Crystal Growth, 198/199, 546-550(1999).

    [66] Pylneva N A, Kosyakov V I, Yurkin A M et al. Real structure of LiB3O5 (LBO) crystals grown in Li2O-B2O3-MoO3 system[J]. Crystal Research and Technology, 36, 1377-1384(2001).

    [67] Kokh A, Kononova N, Mennerat G et al. Growth of high quality large size LBO crystals for high energy second harmonic generation[J]. Journal of Crystal Growth, 312, 1774-1778(2010).

    [68] Hu Z G, Zhao Y, Yue Y C et al. Large LBO crystal growth at 2 kg-level[J]. Journal of Crystal Growth, 335, 133-137(2011).

    [70] Norrestam R, Nygren M, Bovin J O. Structural investigations of new calcium-rare earth (R) oxyborates with the composition Ca4RO(BO3)3[J]. Chemistry of Materials, 4, 737-743(1992).

    [71] Iwai M, Kobayashi T, Furuya H et al. Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re=Y or Gd) as new nonlinear optical material[J]. Japanese Journal of Applied Physics, 36, L276-L279(1997).

    [72] Fei Y T, Chai B H T, Ebbers C A et al. Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system[J]. Journal of Crystal Growth, 290, 301-306(2006).

    [73] Luo J, Fan S J, Wang J C et al. Growth of Ca4YO(BO3)3 crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 229, 261-264(2001).

    [74] Wu A H, Jiang L W, Qian G X et al. Bridgman growth of large-aperture yttrium calcium oxyborate crystal[J]. Materials Research Bulletin, 47, 2689-2691(2012).

    [75] Tu X N, Wang S, Xiong K N et al. Growth and properties of large aperture YCOB crystal for NLO application[J]. Journal of Crystal Growth, 535, 125527(2020).

    [76] Takeda H, Shimamura K, Kohno T et al. Growth and characterization of La3Nb0.5Ga5.5O14 single crystals[J]. Journal of Crystal Growth, 169, 503-508(1996).

    [77] Takeda H, Shimamura K, Chani V I et al. Effect of starting melt composition on crystal growth of La3Nb0.5Ga5.5O14[J]. Crystal Research and Technology, 34, 1141-1147(1999).

    [78] Kong H K, Wang J Y, Zhang H J et al. Growth and characterization of La3Ga5.5Nb0.5O14 crystal[J]. Journal of Crystal Growth, 292, 408-411(2006).

    [79] Yu F P, Yuan D R, Yin X et al. Czochralski growth and characterization of the piezoelectric single crystal La3Ga5.5Nb0.5O14[J]. Solid State Communications, 149, 1278-1281(2009).

    [80] Wang Y Z, Liang F, Wang J Y et al. Growth of a large-aperture mid-infrared nonlinear optical La3Nb0.5Ga5.5O14 crystal for optical parametric chirped-pulse amplification[J]. CrystEngComm, 23, 7212-7218(2021).

    [81] Wang Y Z, Liang F, Lu D Z et al. Laser damage mechanism and threshold improvement of nonlinear optical La3Ga5.5Nb0.5O14 crystal for a mid-infrared high-intensity laser[J]. Optical Materials Express, 12, 3449-3462(2022).

    [82] Wang Y Z, Liang F, Lu D Z et al. Birefringence dispersion management of langasite nonlinear crystals for the improvement of mid-infrared amplification[J]. Crystal Growth & Design, 23, 620-628(2023).

    [83] Giordmaine J A. Mixing of light beams in crystals[J]. Physical Review Letters, 8, 19-20(1962).

    [84] Maker P D, Terhune R W, Nisenoff M et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 8, 21-22(1962).

    [85] Jiang M H. Research progress of nonlinear optical crystal materials[J]. Progress in Physics, 13, 14-25(1993).

    [86] Hawley-Fedder R A, Geraghty P, Locke S N et al. NIF Pockels cell and frequency conversion crystals[J]. Proceedings of SPIE, 5341, 121-126(2004).

    [87] Manes K R, Spaeth M L, Adams J J et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 69, 146-249(2016).

    [88] Key M H, Evans R G. Plasma physics: inertial confinement of fusion[J]. Nature, 313, 94-95(1985).

    [89] Nishimura H, Azechi H, Yamada K et al. Experimental study of wavelength dependences of laser-plasma coupling, transport, and ablation processes[J]. Physical Review A, 23, 2011-2019(1981).

    [90] Chang T Q, He X T, Yu M. Physical processes of indirect driven high gain ICF[J]. High Power Laser & Particle Beams, 1, 193-209(1989).

    [91] Giebe E, Scheibe A. Eine einfache Methode zum qualitativen Nachweis der Piezoelektrizität von Kristallen[J]. Zeitschrift für Physik, 33, 760-766(1925).

    [92] Bruneau D, Tournade A M, Fabre E. Fourth harmonic generation of a large-aperture Nd∶glass laser[J]. Applied Optics, 24, 3740-3745(1985).

    [93] Bredikhin V I, Genkin V N, Kunznetsov C P et al. The 90-degree synchronism in KD2xH2(1-x)PO4 crystals with doubling of the second harmonic of a Nd laser[J]. Soviet Technical Physics Letters, 3, 407-409(1977).

    [94] Kruglik G, Kondratyuk N, Shagov A. Efficient fourth harmonic generation of Nd∶YAG laser in DKDP crystal[J]. Proceedings of SPIE, 4751, 137-144(2002).

    [95] Yang S T, Henesian M A, Weiland T L et al. Noncritically phase-matched fourth harmonic generation of Nd∶glass lasers in partially deuterated KDP crystals[J]. Optics Letters, 36, 1824-1826(2011).

    [96] Ji S H, Zhang S J, Xu M X et al. Fourth harmonic generation of DKDP crystal[J]. High Power Laser and Particle Beams, 24, 1406-1408(2012).

    [97] Ji S H, Zhang S J, Xu M X et al. Study on fourth harmonic generation of DKDP crystal[J]. Proceedings of SPIE, 8206, 82062F(2012).

    [98] Ji S H, Zhang S J, Xu M X et al. Non-critical phase-matching conditions for fourth harmonic generation of DKDP crystal[J]. Optical Materials Express, 2, 735-739(2012).

    [99] Ji S H, Wang F, Zhu L L et al. Non-critical phase-matching fourth harmonic generation of a 1053-nm laser in an ADP crystal[J]. Scientific Reports, 3, 1605(2013).

    [100] Ji S H, Wang F, Xu M M et al. Room temperature, high-efficiency, noncritical phase-matching fourth harmonic generation in partially deuterated ADP crystal[J]. Optics Letters, 38, 1679-1681(2013).

    [101] Wang F, Li F Q, Han W et al. Large aperture and non-critical phase-matched fourth harmonic generation of Nd∶glass lasers[J]. Matter and Radiation at Extremes, 4, 045401(2019).

    [102] Wu B C, Deng D Q, Xu Z Y et al. Highly efficient ultraviolet generation at 355 nm in LiB3O5[J]. Optics Letters, 14, 1080-1081(1989).

    [103] Lin S J, Sun Z Y, Wu B C et al. The nonlinear optical characteristics of a LiB3O5 crystal[J]. Journal of Applied Physics, 67, 634-638(1990).

    [104] Borsutzky A, Brünger R, Huang C et al. Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P[J]. Applied Physics B, 52, 55-62(1991).

    [105] Liu L J, Yu R J, Ma S J. Research on the characteristics of sum-frequency generation and frequency doubling in biaxial crystal LiB3O5[J]. Chinese Journal of Luminescence, 12, 89-97(1991).

    [106] Grechin S G, Dmitriev V G, Dyakov V A et al. Temperature-noncritical third harmonic generation in an LBO crystal[J]. Quantum Electronics, 34, 565-568(2004).

    [107] Kato K. Tunable UV generation to 0.2325 μm in LiB3O5[J]. IEEE Journal of Quantum Electronics, 26, 1173-1175(1990).

    [108] Nikitin D G, Byalkovskiy O A, Vershinin O I et al. Sum frequency generation of UV laser radiation at 266 nm in LBO crystal[J]. Optics Letters, 41, 1660-1663(2016).

    [109] Wang N, Zhang J Y, Yu H J et al. Sum-frequency generation of 133 mJ, 270 ps laser pulses at 266 nm in LBO crystals[J]. Optics Express, 30, 5700-5708(2022).

    [110] Umemura N, Nakao H, Furuya H et al. 90° phase-matching properties of YCa4O(BO3)3 and GdxY1-xCa4O(BO3)3[J]. Japanese Journal of Applied Physics, 40, 596-600(2001).

    [111] Umemura N, Ando M, Suzuki K et al. Temperature-insensitive second-harmonic generation at 0.5321 µm in YCa4O(BO3)3[J]. Japanese Journal of Applied Physics, 42, 5040-5042(2003).

    [112] Kausas A, Loiseau P, Aka G et al. Temperature stable operation of YCOB crystal for giant-pulse green microlaser[J]. Optics Express, 25, 6431-6439(2017).

    [113] Wang Z P, Liu J H, Song R B et al. Anisotropy of nonlinear-optical property of RCOB (R = Gd, Y) crystal[J]. Chinese Physics Letters, 18, 385-387(2001).

    [114] Wang X L, Tian S W, Ren H K et al. Temperature bandwidth in the spatial directions of YCOB[J]. Proceedings of SPIE, 11068, 110682E(2019).

    [115] Zhao X Z, Wu Z X, Wang Z P et al. High-efficiency broadband second-harmonic-generation of YCa4O(BO3)3 crystal[J]. Applied Physics Express, 15, 052001(2022).

    [116] Liu J S, Ma J G, Lu D Z et al. Few-cycle pulses tunable from 3 to 7 µm via intrapulse difference-frequency generation in oxide LGN crystals[J]. Optics Letters, 45, 5728-5731(2020).

    [117] Ross I N, Matousek P, Towrie M et al. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers[J]. Optics Communications, 144, 125-133(1997).

    [118] Danson C, Hillier D, Hopps N et al. Petawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 3, e3(2015).

    [119] Lureau F, Laux S, Casagrande O et al. Latest results of 10 petawatt laser beamline for ELI nuclear physics infrastructure[J]. Proceedings of SPIE, 9726, 972613(2016).

    [120] Hernandez-Gomez C, Blake S P, Chekhlov O et al. The vulcan 10 PW project[J]. Journal of Physics: Conference Series, 244, 032006(2010).

    [121] Chu Y X, Gan Z B, Liang X Y et al. High-energy large-aperture Ti∶sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 40, 5011-5014(2015).

    [122] Liang X, Xie X L, Zhang C et al. Broadband main OPCPA amplifier at 808 nm wavelength in high deuterated DKDP crystals[J]. Optics Letters, 43, 5713-5716(2018).

    [123] Lozhkarev V V, Freidman G I, Ginzburg V N et al. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals[J]. Laser Physics Letters, 4, 421-427(2007).

    [124] Skrobol C, Ahmad I, Klingebiel S et al. Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm[J]. Optics Express, 20, 4619-4629(2012).

    [125] Galimberti M, Hernandez-Gomez C, Musgrave I et al. Influence of the deuteration level of the KD*P crystal on multi-PW class OPCPA laser[J]. Optics Communications, 309, 80-84(2013).

    [126] Xie X L, Zhu J Q, Sun M Z et al. Theoretical and experimental study of 808 nm OPCPA amplifier by using a DKDP crystal[J]. Proceedings of SPIE, 10238, 102380F(2017).

    [127] Dorrer C, Begishev I A, Bahk S W et al. Characterization of partially deuterated KDP crystals using two-wavelength phase-matching angles[J]. Optical Materials Express, 11, 774-790(2021).

    [128] Begishev I A, Bahk S W, Dorrer C et al. A highly efficient, 10-J output signal amplifier for ultra-intense all-OPCPA systems[J]. Proceedings of SPIE, 11666, 1166607(2021).

    [129] Lozhkarev V, Freidman G, Ginzburg V et al. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd∶YLF laser[J]. Laser Physics, 15, 1319-1333(2005).

    [130] Andreev N F, Bespalov V I, Bredikhin V I et al. New scheme of a petawatt laser based on nondegenerate parametric amplification of chirped pulses in DKDP crystals[J]. Journal of Experimental and Theoretical Physics Letters, 79, 144-147(2004).

    [131] Freidman G I, Andreev N, Bespalov V I et al. Multicascade broadband optical parametric chirped pulse amplifier based on KD*P crystals[J]. Proceedings of SPIE, 4972, 90-101(2003).

    [132] Freidman G I, Andreev N, Ginzburg V et al. Parametric amplification of chirped laser pulses at 911-nm and 1250-nm wavelengths[J]. Proceedings of SPIE, 4630, 135-146(2002).

    [133] Lozhkarev V V, Ginzburg V N, Freidman G I et al. 200 terawatt femtosecond laser based on optical parametric amplification in DKDP crystal[J]. Proceedings of SPIE, 6100, 61001D(2006).

    [134] Hu J B, Wang X L, Xu Y et al. Numerical analysis of the DKDP-based high-energy optical parametric chirped pulse amplifier for a 100 PW class laser[J]. Applied Optics, 60, 3842-3848(2021).

    [135] Zeng X M, Zhou K N, Zuo Y L et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 42, 2014-2017(2017).

    [136] Zhu J Q, Xie X L, Sun M Z et al. Analysis and construction status of SG-II 5 PW laser facility[J]. High Power Laser Science and Engineering, 6, e29(2018).

    [137] Batysta F, Antipenkov R, Novák J et al. Broadband OPCPA system with 11 mJ output at 1 kHz, compressible to 12 fs[J]. Optics Express, 24, 17843-17848(2016).

    [138] Papadopoulos D N, Ramirez P, Genevrier K et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains[J]. Optics Letters, 42, 3530-3533(2017).

    [139] Liang X, Xie X L, Kang J et al. Design and experimental demonstration of a high conversion efficiency OPCPA pre-amplifier for petawatt laser facility[J]. High Power Laser Science and Engineering, 6, e58(2018).

    [140] Liu X D, Xu L, Liang X Y. Output features of optical parametric chirped pulse amplification in LiB3O5 near 800 nm at different phase-matching geometries[J]. Optics Letters, 41, 5809-5812(2016).

    [141] Batysta F, Antipenkov R, Borger T et al. Spectral pulse shaping of a 5 Hz, multi-joule, broadband optical parametric chirped pulse amplification frontend for a 10 PW laser system[J]. Optics Letters, 43, 3866-3869(2018).

    [142] Gaul E W, Martinez M, Blakeney J et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd∶glass amplifier[J]. Applied Optics, 49, 1676-1681(2010).

    [143] Sun M Z, Ji L L, Bi Q Y et al. Analysis of ultra-broadband high-energy optical parametric chirped pulse amplifier based on YCOB crystal[J]. Chinese Optics Letters, 9, 101901(2011).

    [144] Pires H, Galimberti M, Figueira G. Numerical evaluation of ultrabroadband parametric amplification in YCOB[J]. Journal of the Optical Society of America B, 31, 2608-2614(2014).

    [145] Yu L H, Liang X Y, Li J F et al. Experimental demonstration of joule-level non-collinear optical parametric chirped-pulse amplification in yttrium calcium oxyborate[J]. Optics Letters, 37, 1712-1714(2012).

    [146] Yang S H, Liang X, Xie X L et al. Ultra-broadband high conversion efficiency optical parametric chirped-pulse amplification based on YCOB crystals[J]. Optics Express, 28, 11645-11651(2020).

    [147] Hong K H, Lai C J, Siqueira J P et al. Multi-mJ, kHz, 2.1 μm optical parametric chirped-pulse amplifier and high-flux soft X-ray high-harmonic generation[J]. Optics Letters, 39, 3145-3148(2014).

    [148] Shamir Y, Rothhardt J, Hädrich S et al. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate[J]. Optics Letters, 40, 5546-5549(2015).

    [149] Deng Y P, Schwarz A, Fattahi H et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm[J]. Optics Letters, 37, 4973-4975(2012).

    [150] Zhao K, Zhong H Z, Yuan P et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier[J]. Optics Letters, 38, 2159-2161(2013).

    [151] Chalus O, Bates P K, Smolarski M et al. Mid-IR short-pulse OPCPA with micro-Joule energy at 100 kHz[J]. Optics Express, 17, 3587-3594(2009).

    [152] Heese C, Phillips C R, Mayer B W et al. 75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA[J]. Optics Express, 20, 26888-26894(2012).

    [153] Mitrofanov A V, Voronin A A, Mitryukovskiy S I et al. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics[J]. Optics Letters, 40, 2068-2071(2015).

    [154] Andriukaitis G, Balčiūnas T, Ališauskas S et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier[J]. Optics Letters, 36, 2755-2757(2011).

    [155] Exner G, Grigorov A, Badikov V et al. Hardness and Young’s modulus of BaGa4S7 and BaGa4Se7 nonlinear optical crystals[J]. Optical Materials, 133, 112994(2022).

    [156] Guo Y F, Zhou Y Q, Lin X S et al. Growth and characterizations of BaGa4S7 crystal[J]. Optical Materials, 36, 2007-2011(2014).

    [157] Bai Z X, Gao J, Zhao C et al. Research progress of long-wave infrared lasers based on nonlinear frequency conversion[J]. Acta Optica Sinica, 43, 0314001(2023).

    [158] Yao B Q, Yang K, Mi S Y et al. Research progress of high-power Ho∶YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 49, 0101002(2022).

    [159] Meng X H, Li Z, Yao J Y. Property and application of new infrared nonlinear optical crystal BaGa4Se7[J]. Chinese Journal of Lasers, 49, 0101005(2022).

    [160] Li Z, Li C X, Yao J Y et al. Research progress of BaGa4Se7 and BaGa2GeSe6 crystals[J]. Chinese Journal of Quantum Electronics, 38, 185-191(2021).

    [161] Ma J G, Wang J, Hu D X et al. Theoretical investigations of broadband mid-infrared optical parametric amplification based on a La3Ga55Nb05O14 crystal[J]. Optics Express, 24, 23957-23968(2016).

    [162] Dmitriev V G, Gurzadyan G G, Nikogosyan D N[M]. Handbook of nonlinear optical crystals(1999).

    [163] Li Y G, Zhu D X, Zhang Q H et al. Threshold fluences for conditioning, fatigue and damage effects of DKDP crystals[J]. Optical Materials, 91, 199-204(2019).

    [164] Tu H, Hu Z G, Zhao Y et al. Growth of large aperture LBO crystal applied in high power OPCPA schemes[J]. Journal of Crystal Growth, 546, 125728(2020).

    [165] Zheng Y Q, Wu A H, Gao P et al. Laser damage threshold and nonlinear optical properties of large aperture elements of YCOB crystal[J]. Proceedings of SPIE, 8206, 82062G(2012).

    [166] Pack M V, Armstrong D J, Smith A V et al. Measurement of the χ(2) tensor of GdCa4O(BO3)3 and YCa4O(BO3)3 crystals[J]. Journal of the Optical Society of America B, 22, 417-425(2005).

    Mingxia Xu, Haohai Yu, Dazhi Lu, Xun Sun, Xinguang Xu, Huaijin Zhang. Research Progress in Nonlinear Optical Crystals for High-Power Laser (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116004
    Download Citation