• Photonics Research
  • Vol. 10, Issue 4, 1011 (2022)
Dinusha Serandi Gunawardena1、2、3、*, Xin Cheng1、2、4、*, Jingxian Cui1、2, Geraldi Edbert1, Linyue Lu1、2, Yuk Ting Ho1, and Hwa-Yaw Tam1、2
Author Affiliations
  • 1Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
  • 2Photonics Research Institute, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
  • 3e-mail: dinusha.gunawardena@polyu.edu.hk
  • 4e-mail: eechengx@polyu.edu.hk
  • show less
    DOI: 10.1364/PRJ.453683 Cite this Article Set citation alerts
    Dinusha Serandi Gunawardena, Xin Cheng, Jingxian Cui, Geraldi Edbert, Linyue Lu, Yuk Ting Ho, Hwa-Yaw Tam. Regenerated polymer optical fiber Bragg gratings with thermal treatment for high temperature measurements[J]. Photonics Research, 2022, 10(4): 1011 Copy Citation Text show less
    References

    [1] J. Bonefacino, H.-Y. Tam, T. S. Glen, X. Cheng, C.-F. J. Pun, J. Wang, P.-H. Lee, M.-L. V. Tse, S. T. Boles. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light Sci. Appl., 7, 17161(2018).

    [2] S. Koyama, Y. Haseda, H. Ishizawa, F. Okazaki, J. Bonefacino, H.-Y. Tam. Measurement of pulsation strain at the fingertip using a plastic FBG sensor. IEEE Sens. J., 21, 21537-21545(2021).

    [3] C. Broadway, R. Min, A. G. Leal-Junior, C. Marques, C. Caucheteur. Toward commercial polymer fiber Bragg grating sensors: review and applications. J. Lightwave Technol., 37, 2605-2615(2019).

    [4] C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, D. J. Webb. Fast Bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms. Sensors, 17, 891(2017).

    [5] A. Fasano, G. Woyessa, P. Stajanca, C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, K. Krebber, O. Bang. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Opt. Mater. Express, 6, 649-659(2016).

    [6] A. Theodosiou, K. Kalli. Recent trends and advances of fibre Bragg grating sensors in CYTOP polymer optical fibres. Opt. Fiber Technol., 54, 102079(2020).

    [7] X. Cheng, J. Bonefacino, B. O. Guan, H. Y. Tam. All-polymer fiber-optic pH sensor. Opt. Express, 26, 14610-14616(2018).

    [8] I.-L. Bundalo, K. Nielsen, C. Markos, O. Bang. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Opt. Express, 22, 5270-5276(2014).

    [9] D. Sáez-Rodríguez, K. Nielsen, O. Bang, D. J. Webb. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit. Opt. Lett., 39, 3421-3424(2014).

    [10] C. Wochnowski, S. Metev, G. Sepold. UV-laser-assisted modification of the optical properties of polymethylmethacrylate. Appl. Surf. Sci., 154, 706-711(2000).

    [11] R. Oliveira, L. Bilro, R. Nogueira. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Opt. Express, 23, 10181-10187(2015).

    [12] J. Bonefacino, X. Cheng, C.-F. J. Pun, S. T. Boles, H.-Y. Tam. Impact of high UV fluences on the mechanical and sensing properties of polymer optical fibers for high strain measurements. Opt. Express, 28, 1158-1167(2020).

    [13] X. Cheng, D. Gunawardena, C. F. Pun, J. Bonefacino, H. Y. Tam. Single nanosecond-pulse production of polymeric fiber Bragg gratings for biomedical applications. Opt. Express, 28, 33573-33583(2020).

    [14] J. L. Dinerman, R. D. Berger, H. Calkins. Temperature monitoring during radiofrequency ablation. J. Cardiovasc. Electrophysiol., 7, 163-173(1996).

    [15] M. Zaltieri, C. Massaroni, F. M. Cauti, E. Schena. Techniques for temperature monitoring of myocardial tissue undergoing radiofrequency ablation treatments: an overview. Sensors, 21, 1453(2021).

    [16] C. Markos, A. Stefani, K. Nielsen, H. K. Rasmussen, W. Yuan, O. Bang. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express, 21, 4758-4765(2013).

    [17] G. Woyessa, H. K. Rasmussen, O. Bang. Zeonex–a route towards low loss humidity insensitive single-mode step-index polymer optical fibre. Opt. Fiber Technol., 57, 102231(2020).

    [18] K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, M. C. Large. Thermal response of Bragg gratings in PMMA microstructured optical fibers. Opt. Express, 15, 8844-8850(2007).

    [19] S. Bandyopadhyay, J. Canning, M. Stevenson, K. Cook. Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm. Opt. Lett., 33, 1917-1919(2008).

    [20] D. S. Gunawardena, O. kit Law, Z. Liu, X. Zhong, Y.-T. Ho, H.-Y. Tam. Resurgent regenerated fiber Bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400°C. Opt. Express, 28, 10595-10608(2020).

    [21] J. Canning. Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing. Measurement, 79, 236-249(2016).

    [22] P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, K. Krebber. Molecular alignment relaxation in polymer optical fibers for sensing applications. Opt. Fiber Technol., 28, 11-17(2016).

    [23] W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, O. Bang. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Opt. Commun., 284, 176-182(2011).

    [24] A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, D. J. Webb. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity. Opt. Fiber Technol., 36, 68-74(2017).

    [25] G. Woyessa, K. Nielsen, A. Stefani, C. Markos, O. Bang. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express, 24, 1206-1213(2016).

    [26] G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, O. Bang. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express, 7, 286-295(2017).

    [27] S. Lerouge. Sterilisation and cleaning of metallic biomaterials. Metals for Biomedical Devices, 303-326(2010).

    [28] G. Woyessa, A. Fasano, C. Markos, H. K. Rasmussen, O. Bang. Low loss polycarbonate polymer optical fiber for high temperature FBG humidity sensing. IEEE Photon. Technol. Lett., 29, 575-578(2017).

    [29] M. Yamazaki. Industrialization and application development of cyclo-olefin polymer. J. Mol. Catal. A Chem., 213, 81-87(2004).

    [30] J. Forsyth, J. M. Pereña, R. Benavente, E. Pérez, I. Tritto, L. Boggioni, H. H. Brintzinger. Influence of the polymer microstructure on the thermal properties of cycloolefin copolymers with high norbornene contents. Macromol. Chem. Phys., 202, 614-620(2001).

    [31] A. A. Leal, J. P. Best, D. Rentsch, J. Michler, R. Hufenus. Spectroscopic elucidation of structure-property relations in filaments melt-spun from amorphous polymers. Eur. Polym. J., 89, 78-87(2017).

    [32] M. Glotin, L. Mandelkern. A Raman spectroscopic study of the morphological structure of the polyethylenes. Colloid Polym. Sci., 260, 182-192(1982).

    [33] R. J. Young. Monitoring deformation processes in high-performance fibres using Raman spectroscopy. J. Text. Inst., 86, 360-381(1995).

    Dinusha Serandi Gunawardena, Xin Cheng, Jingxian Cui, Geraldi Edbert, Linyue Lu, Yuk Ting Ho, Hwa-Yaw Tam. Regenerated polymer optical fiber Bragg gratings with thermal treatment for high temperature measurements[J]. Photonics Research, 2022, 10(4): 1011
    Download Citation