• Matter and Radiation at Extremes
  • Vol. 5, Issue 6, 064202 (2020)
F. B. Rosmej1、2、3、4、a), L. A. Vainshtein5, V. A. Astapenko3, and V. S. Lisitsa3、4、6
Author Affiliations
  • 1Sorbonne University, Faculty of Science and Engineering, UMR 7605, case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France
  • 2LULI, Ecole Polytechnique, CNRS-CEA, Physique Atomique dans les Plasmas Denses (PAPD), Route de Saclay, F-91128 Palaiseau Cedex, France
  • 3Moscow Institute of Physics and Technology MIPT (National Research University), Dolgoprudnyi 141700, Russia
  • 4National Research Nuclear University—MEPhI, Department of Plasma Physics, Moscow 115409, Russia
  • 5P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
  • 6National Research Center “Kurchatov Institute”, Moscow, Russia
  • show less
    DOI: 10.1063/5.0022751 Cite this Article
    F. B. Rosmej, L. A. Vainshtein, V. A. Astapenko, V. S. Lisitsa. Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells[J]. Matter and Radiation at Extremes, 2020, 5(6): 064202 Copy Citation Text show less

    Abstract

    Statistical models combined with the local plasma frequency approach applied to the atomic electron density are employed to study the photoionization cross-section for complex atoms. It is demonstrated that the Thomas–Fermi atom provides surprisingly good overall agreement even for complex outer-shell configurations, where quantum mechanical approaches that include electron correlations are exceedingly difficult. Quantum mechanical photoionization calculations are studied with respect to energy and nl quantum number for hydrogen-like and non-hydrogen-like atoms and ions. A generalized scaled photoionization model (GSPM) based on the simultaneous introduction of effective charges for non-H-like energies and scaling charges for the reduced energy scale allows the development of analytical formulas for all states nl. Explicit expressions for nl = 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, and 5s are obtained. Application to H-like and non-H-like atoms and ions and to neutral atoms demonstrates the universality of the scaled analytical approach including inner-shell photoionization. Likewise, GSPM describes the near-threshold behavior and high-energy asymptotes well. Finally, we discuss the various models and the correspondence principle along with experimental data and with respect to a good compromise between generality and precision. The results are also relevant to large-scale integrated light–matter interaction simulations, e.g., X-ray free-electron laser interactions with matter or photoionization driven by a broadband radiation field such as Planckian radiation.

    σω=2π2a0cgω,(2.1)

    View in Article

    gωdω=Nn,(2.2)

    View in Article

    gω=jfijδωωij,(2.3)

    View in Article

    dfdε=2ωdiε23e2a02,(2.4)

    View in Article

    limn2π2ca022Ryfnl,nlEn+1lEnl=σnl,εlInl.(2.5)

    View in Article

    σnlω=4π2Nnl3e2a0ωc2l+1[dnl,εl+12+dnl,εl12],(2.6)

    View in Article

    dnl,εl=eV0a02l+12l+1l1l000×0RnlrrRεlrr2dr,(2.7)

    View in Article

    σnlω=8π23cNnla02Ryωpω3|gnlpω|2,(2.8)

    View in Article

    σ1sBω=28π3ca02Ryωpωa0/31+pωa0/24.(2.9)

    View in Article

    ω=ωpr=4πnr.(2.10)

    View in Article

    gω=d3rnrδωωpr.(2.11)

    View in Article

    σω=2π2ca0d3rnrδωωpr.(2.12)

    View in Article

    σphBLω=4π2ωcrω2nrωnrω,(2.13)

    View in Article

    σphBLω=sν=ω2ZRy=9π4ν32cxν2fxνfxνa02,(2.14)

    View in Article

    fexpx=1289π3e2x,(2.15)

    View in Article

    σphBLω=2ZRy/ν=9π4a02ν64cln21623πν,ν1623π2.4.(2.16)

    View in Article

    expiH^0+Δ1texpiH^0texpiΔ1t,Δ1=e2a0r2,(2.17)

    View in Article

    σphω2πZ23cω+dtψ|expiΔ1t/|ψeiωt.(2.18)

    View in Article

    ψr24πr2nr.(2.19)

    View in Article

    σphω=8π3Z23ca052Ryω7/2nr=a0V0ω.(2.20)

    View in Article

    ω=H1rH0r.(2.21)

    View in Article

    σph1sHlikeω=29π23Z2cI1sω4a02exp4ζarcctgζ1exp2πζ,(3.1)

    View in Article

    σ1sω29π2a023e4Z2c183ωI1sI1s0.23a02Z2183ωI1sI1s,(3.2)

    View in Article

    σnsthres=I1s/Insσ1sthres.(3.3)

    View in Article

    σ1sω28π3a02Z2cI1sω7/21πI1sω.(3.4)

    View in Article

    σnlω1/ωl+7/2,(3.5)

    View in Article

    c2π2a0V0Inlσnlωdω=Nnl,(1)

    View in Article

    σnlω=4π2ca02Nnl52+lInl5/2+lRyω7/2+l.(3.6)

    View in Article

    ζ=ze2/V1,(3.7)

    View in Article

    σnlKrω=64π33Nnla02cZ2RyInlInlω3.(3.8)

    View in Article

    σn0l0phi=πa02Zeff2m2l0+1P1u+P2u+P31u+P47/2+l0,(4.1)

    View in Article

    u=EEn0l0Z̃2Ry,(4.2)

    View in Article

    Zeff=n0En0l0Ry,(4.3)

    View in Article

    z=ZnNbound+1,(4.4)

    View in Article

    Z̃=Zeff+Zeffz(4.5)

    View in Article

    Z̃=ZnNbound+Nnln0l0(4.6)

    View in Article

    σn0l0phi=πa02Zeff2m2l0+1P1u+P2u+P31u+P47/2+l0uπa02Zeff2m2l0+1P11E7/2+l0.(4.7)

    View in Article

    σn0l0phiu0πa02Zeff2m2l0+1P1P2P31P47/2+l0=const.(4.8)

    View in Article

    nx=329π3Zn2χxx3/2,(6.1)

    View in Article

    x=rrTF=9π21281/31Zn1/3.(6.2)

    View in Article

    d2χxdx2=1x1/2χ3/2x(6.3)

    View in Article

    σplasmaphirω=8π5/2crω2n3/2rωdnrdrr=rω.(6.4)

    View in Article

    E=ωp=4πnrω.(6.5)

    View in Article

    χSommerfeldx=11+x1443/2λ2λ1/2,(6.6)

    View in Article

    λ1=127+737.772(6.7)

    View in Article

    λ2=127+730.7720.(6.8)

    View in Article

    dnSommerfeldrdr=1rTFdnSommerfeldxdx|x=r/rTF,(6.9)

    View in Article

    dnSommerfeldxdx=16Zn23π3χxxxdχxdxχxx2,(6.10)

    View in Article

    dχSommerfeldxdx=λ1λ221443/2x1443/2λ211+x1443/2λ2λ1211+x1443/2λ2λ1.(6.11)

    View in Article

    χLenzJensenx3.7exp9.7x1+0.269.7x9.7x3/2.(6.12)

    View in Article

    nr=14πr2nlNnlPnlr2,(6.13)

    View in Article

    04πr2nrdr=0nlNnlPnlr2dr=Zn.(6.14)

    View in Article

    P1s=2rexp(r).(6.15)

    View in Article

    σnlphi:=EnlσnlphiEcÑEdE,(7.1)

    View in Article

    ÑE=Ñ01πΓexpEE02Γ2,(7.2)

    View in Article

    Γ=δE/2ln2,(7.3)

    View in Article

    ÑE,t=ÑEft,(7.4)

    View in Article

    +ftdt=1,(7.5)

    View in Article

    Ntot,τ=0dEvolumedVτ/2+τ/2dtÑFELE,t2AcτÑ0erfln20.761AcτÑ0,(7.6)

    View in Article

    erf(x)=1π0xey2dy(7.7)

    View in Article

    ĨE,tdEdAdt=ÑE,tEdEdVdt.(7.8)

    View in Article

    ĪδE,τ=δE/2δE/2dEτ/2τ/2cdtEÑE,t4E0cÑ0erf2ln20.579cE0Ñ0,(7.9)

    View in Article

    ĪδE,τ2.8×109Ñ0cm3E0eVWcm2.(7.10)

    View in Article

    Īτ=2erfln2Ntot,τE0πτd2/4Ntot,τE0τd2,(7.11)

    View in Article

    σnlphiσnlphiE0cÑ0.(7.12)

    View in Article

    Ñ0=Īτ4cE0erf2ln2=2Ntot,τπcτd2erfln2,(7.13)

    View in Article

    σnlphiσnlphiE0Īτ0.579E0σnlphiE0Ntot,τ0.598τd2.(7.14)

    View in Article

    ÑE=E23π2c31expE/kTr1,(7.15)

    View in Article

    ÑE=1.31871×1013E2expE/kTr11cm3eV,(7.16)

    View in Article

    σnlphi:=Z̃Zeff2πa02Ry3π2c2m2l0+1P10u+P2u+P31u+P47/2+l0Z̃2Ryu+En0l02exp(Z̃2Ryu+En0l0)/kTr1du.(7.17)

    View in Article

    F. B. Rosmej, L. A. Vainshtein, V. A. Astapenko, V. S. Lisitsa. Statistical and quantum photoionization cross sections in plasmas: Analytical approaches for any configurations including inner shells[J]. Matter and Radiation at Extremes, 2020, 5(6): 064202
    Download Citation