• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210735 (2021)
Ruifeng Liu*, Shupeng Zhao, and Fuli Li
Author Affiliations
  • School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.3788/IRLA20210735 Cite this Article
    Ruifeng Liu, Shupeng Zhao, Fuli Li. Single-pixel complex amplitude imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210735 Copy Citation Text show less
    References

    [1] M P Edgar, G M Gibson, Padgett, J M. Principles and prospects for single-pixel imaging. Nature Photon, 13, 13-20(2019).

    [2] G M Gibson, S D Johnson, M J Padgett. Single-pixel imaging 12 years on: A review. Optics Express, 28, 28190-28208(2020).

    [3] Kaige Wang, Dezhong Cao, Jun Xiong. Progress in correlated optics. Physics, 37, 223-232(2008).

    [4] J H Shapiro, R W Boyd. The physics of ghost imaging. Quantum Information Processing, 11, 949-993(2012).

    [5] T B Pittman, Y H Shih, D V Strekalov, et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429(1995).

    [6] D V Strekalov, A V Sergienko, D N Klyshko, et al. Observation of two-photon "ghost" interference and diffraction. Physical Review Letters, 74, 3600-3603(1995).

    [7] E J S Fonseca, P H S Ribeiro, S Padua, et al. Quantum interference by a nonlocal double slit. Physical Review A, 60, 1530-1533(1999).

    [8] R S Bennink, S J Bentley, R W Boyd. "Two-Photon" coincidence imaging with a classical source. Physical Review Letters, 89, 113601(2002).

    [9] A Gatti, E Brambilla, M Bache, et al. Correlated imaging, quantum and classical. Physical Review A, 70, 013802(2004).

    [10] A Gatti, E Brambilla, M Bache, et al. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Physical Review Letters, 93, 093602(2004).

    [11] J Cheng, S Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Physical Review Letters, 92, 93903(2004).

    [12] D Z Cao, J Xiong, K Wang. Geometrical optics in correlated imaging systems. Physical Review A, 71, 013801(2005).

    [13] A Valencia, G Scarcelli, M D’Angelo, et al. Two-photon imaging with thermal light. Physical Review Letters, 94, 063601(2005).

    [14] F Ferri, D Magatti, A Gatti, et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Physical Review Letters, 94, 183602(2005).

    [15] D Zhang, Y H Zhai, L A Wu, et al. Correlated two-photon imaging with true thermal light. Optics Letters, 30, 2354-2356(2005).

    [16] X H Chen, Q Liu, K H Luo, et al. Lensless ghost imaging with true thermal light. Optics Letters, 34, 695(2009).

    [17] D Z Cao, J Xiong, S H Zhang, et al. Enhancing visibility and resolution in Nth-order intensity correlation of thermal light. Applied Physics Letters, 92, 013802(2008).

    [18] K W C Chan, M N O'Sullivan, R W Boyd. High-order thermal ghost imaging. Optics Letters, 34, 3343-3345(2009).

    [19] P Zhang, W Gong, X Shen, et al. Improving resolution by the second-order correlation of light fields. Optics Letters, 34, 1222(2009).

    [20] B I Erkmen, J H Shapiro. Signal-to-noise ratio of Gaussian-state ghost imaging. Physical Review A, 79, 1-2(2009).

    [21] Y Zhou, J Simon, J Liu, et al. Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime. Physical Review A, 81, 1334-1342(2010).

    [22] K Chan, M N O'Sullivan, R W Boyd. Optimization of thermal ghost imaging: High-order correlations vs. background subtraction. Optics Express, 18, 5562-5573(2010).

    [23] X H Chen, I N Agafonov, K H Luo. High-visibility, high-order lensless ghost imaging with thermal light. Optics Letters, 35, 1166-1168(2010).

    [24] Karmakar S, Zhai Y H, Chen H, et al. The first ghost image using sun as a light source[C]Quantum Electronics Laser Science Conference, 2011: QFD3.

    [25] X F Liu, X H Chen, X R Yao, et al. Lensless ghost imaging with sunlight. Optics Letters, 39, 2314(2014).

    [26] W L Gong, C Q Zhao, H Yu, et al. Three-dimensional ghost imaging lidar via sparsity constraint. Scientific Reports, 6, 26133(2016).

    [27] Y L Wang, F R Wang, R F Liu, et al. Sub-rayleigh resolution single-pixel imaging using Gaussian-and doughnut-spot illumination. Optics Express, 27, 5973-5981(2019).

    [28] Y L Wang, Y N Zhou, S X Wang, et al. Enhancement of spatial resolution of ghost imaging via localizing and thresholding. Chinese Physics B, 28, 044202(2019).

    [29] J H Shapiro. Computational ghost imaging. Physical Review A, 78, 061802(2008).

    [30] O Katz, Y Bromberg, Y Silberberg. Compressive ghost imaging. Applied Physics Letters, 95, 131110(2009).

    [31] B Sun, M P Edgar, R Bowman, et al. 3 D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [32] M J Sun, M P Edgar, G M Gibson, et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nature Communications, 7, 1-6(2016).

    [33] S S Welsh, M P Edgar, R Bowman, et al. Fast full-color computational imaging with single-pixel detectors. Optics Express, 21, 23068-23074(2013).

    [34] N Radwell, K J Mitchell, G M Gibson, et al. Single-pixel infrared and visible microscope. Optica, 1, 285-289(2014).

    [35] P A Morris, R S Aspden, J Bell, et al. Imaging with a small number of photons. Nature Communications, 6, 5913(2015).

    [36] M F Duarte, M A Davenport, D Takhar, et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [37] Cès E J. Compressive sampling[C]Proceedings of the International Congress of Mathematicians, 2006, 3: 14331452.

    [38] E J Candes, M B Wakin. An introduction to compressive sampling. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [39] E J Candes, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [40] W K Yu, M F Li, X R Yao, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Optics Express, 22, 7133-7144(2014).

    [41] J Li, Y Li, J Li, et al. Single-pixel compressive optical image hiding based on conditional generative adversarial network. Optics Express, 28, 22992-23002(2020).

    [42] A Giljum, W Liu, L Li, et al. General neural network approach to compressive feature extraction. Applied Optics, 60, G217-G223(2021).

    [43] A Kallepalli, J Innes, M Padgett. Compressed sensing in the far-field of the spatial light modulator in high noise conditions. Scientific Reports, 11, 1-8(2021).

    [44] G H Wu, T H Li, J H Li, et al. Ghost imaging under low-rank constraint. Optics Letters, 44, 4311-4314(2019).

    [45] B Lochocki, K Abrashitova, Boer J F de, et al. Ultimate resolution limits of speckle-based compressive imaging. Optics Express, 29, 3943-3955(2021).

    [46] Z Zhang, X Ma, J Zhong. Single-pixel imaging by means of Fourier spectrum acquisition. Nature Communications, 6, 6225(2014).

    [47] Y Ma, Y Yin, S Jiang, et al. Single pixel 3D imaging with phase-shifting fringe projection. Optics and Lasers in Engineering, 140, 106532(2021).

    [48] D J Starling, I Storer, G A Howland. Compressive sensing spectroscopy with a single pixel camera. Applied Optics, 55, 5198-5202(2016).

    [49] F Magalhaes, M Abolbashari, F M Araujo, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing. Optical Engineering, 51, 071406(2012).

    [50] S Liu, Z Liu, J Wu, et al. Hyperspectral ghost imaging camera based on a flat-field grating. Optics Express, 26, 17705-17716(2018).

    [51] V Duran, P Clemente, M Fernandez-Alonso, et al. Single-pixel polarimetric imaging. Optics Letters, 37, 824-826(2012).

    [52] S S Welsh, M P Edgar, R Bowman, et al. Near video-rate linear Stokes imaging with single-pixel detectors. Journal of Optics, 17, 025705(2015).

    [53] H Wu, M Zhao, F Li, et al. Underwater polarization‐based single pixel imaging. Journal of the Society for Information Display, 28, 157-163(2020).

    [54] G Wang, H Zheng, Z Tang, et al. All-optical naked-eye ghost imaging. Scientific Reports, 10, 1-7(2020).

    [55] P Clemente, V Durán, E Tajahuerce, et al. Optical encryption based on computational ghost imaging. Optics Letters, 35, 2391-2393(2010).

    [56] M Tanha, R Kheradmand, S Ahmadi-Kandjani, et al. Gray-scale and color optical encryption based on computational ghost imaging. Applied Physics Letters, 101, 101108(2012).

    [57] L Sui, Z Pang, Y Cheng, et al. An optical image encryption based on computational ghost imaging with sparse reconstruction. Optics and Lasers in Engineering, 143, 106627(2021).

    [58] Zhang, Z, S Jiao, M Yao, et al. Secured single-pixel broadcast imaging. Optics Express, 26, 14578-14591(2018).

    [59] S Ota, R Horisaki, Y Kawamura, et al. Ghost cytometry. Science, 360, 1246-1251(2018).

    [60] Studer V, Bobin J, Chahid M, et al. Compressive fluescence microscopy f biological hyperspectral imaging[C]Proceedings of the National Academy of Sciences, 2012, 109(26): E1679E1687.

    [61] G M Gibson, B Sun, M P Edgar, et al. Real-time imaging of methane gas leaks using a single-pixel camera. Optics Express, 25, 2998-3005(2017).

    [62] Zhang, Z, J Ye, Q Deng, et al. Image-free real-time detection and tracking of fast moving object using a single-pixel detector. Optics Express, 27, 35394-35401(2019).

    [63] Q Deng, Z Zhang, J Zhong. Image-free real-time 3-D tracking of a fast-moving object using dual-pixel detection. Optics Letters, 45, 4734-4737(2020).

    [64] W Jiang, X Li, X Peng, et al. Imaging high-speed moving targets with a single-pixel detector. Optics Express, 28, 7889-7897(2020).

    [65] Zernike, F. How I discovered phase contrast. Science, 121, 345-349(1955).

    [66] M Bache, D Magatti, F Ferri, et al. Coherent imaging of a pure phase object with classical incoherent light. Physical Review A, 73, 053802(2006).

    [67] W G Han. Phase-retrieval ghost imaging of complex-valued objects. Physical Review A, 82, 023828(2010).

    [68] T Shirai, T Setälä, A T Friberg. Ghost imaging of phase objects with classical incoherent light. Physical Review A, 84, 041801(2011).

    [69] D J Zhang, Q Tang, T F Wu, et al. Lensless ghost imaging of a phase object with pseudo-thermal light. Applied Physics Letters, 104, 121113(2014).

    [70] F Soldevila, V Durán, P Clemente, et al. Phase imaging by spatial wavefront sampling. Optica, 5, 164-174(2018).

    [71] P Clemente, V Duran, E Tajahuerce, et al. Single-pixel digital ghost holography. Physical Review A, 86, 041803(2012).

    [72] P Clemente, V Durán, E Tajahuerce, et al. Compressive holography with a single-pixel detector. Optics Letters, 38, 2524-2527(2013).

    [73] D Wu, J Luo, G Huang, et al. Imaging biological tissue with high-throughput single-pixel compressive holography. Nature Communications, 12, 1-12(2021).

    [74] R Liu, S Zhao, P Zhang, et al. Complex wavefront reconstruction with single-pixel detector. Applied Physics Letters, 114, 161901(2019).

    [75] S Zhao, R Liu, P Zhang, et al. Fourier single-pixel reconstruction of a complex amplitude optical field. Optics Letters, 44, 3278-3281(2019).

    [76] S Zhao, S Chen, X Wang, et al. Measuring the complex spectrum of orbital angular momentum and radial index with a single-pixel detector. Optics Letters, 45, 5990-5993(2020).

    [77] R Horisaki, H Matsui, J Tanida. Single-pixel compressive diffractive imaging with structured illumination. Applied Optics, 56, 4085-4089(2017).

    [78] M Li, L Bian, G Zheng, et al. Single-pixel ptychography. Optics Letters, 46, 1624-1627(2021).

    [79] Y Shechtman, Y C Eldar, O Cohen, et al. Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal Processing Magazine, 32, 87-109(2015).

    [80] B C Platt, R Shack. History and principles of Shack-Hartmann wavefront sensing. Journal of Refractive Surgery, 17, S573-S577(2001).

    [81] G Zheng, R Horstmeyer, C Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 7, 739-745(2013).

    [82] N Streibl. Phase imaging by the transport equation of intensity. Optics Communications, 49, 6-10(1984).

    [83] H N Chapman, K A Nugent. Coherent lensless X-ray imaging. Nature Photonics, 4, 833-839(2010).

    [84] B Y Wang, L Han, Y Yang, et al. Wavefront sensing based on a spatial light modulator and incremental binary random sampling. Optics Letters, 42, 603-606(2017).

    [85] W Martienssen, E Spiller. Coherence and fluctuations in light beams. American Journal of Physics, 32, 919-926(1964).

    [86] Z Zhang, X Wang, G Zheng, et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging. Optics Express, 25, 19619-19639(2017).

    [87] M P Edgar, G M Gibson, R W Bowman, et al. Simultaneous real-time visible and infrared video with single-pixel detectors. Scientific Reports, 5, 1-8(2015).

    [88] M Xi, H Chen, Y Yuan, et al. Bi-frequency 3D ghost imaging with Haar wavelet transform. Optics Express, 27, 32349-32359(2019).

    [89] M A Davenport, M B Wakin. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Transactions on Information Theory, 56, 4395-4401(2010).

    [90] Z Zhang, S Liu, J Peng, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements. Optica, 5, 315-319(2018).

    [91] C Tao, H Zhu, X Wang, et al. Compressive single-pixel hyperspectral imaging using RGB sensors. Optics Express, 29, 11207-11220(2021).

    [92] W Gao, Q R Yan, H L Zhou, et al. Single photon counting compressive imaging using a generative model optimized via sampling and transfer learning. Optics Express, 29, 5552-5566(2021).

    [93] S Shin, K R Lee, Y S Baek, et al. Reference-free single-point holographic imaging and realization of an optical bidirectional transducer. Physical Review Applied, 9, 044042(2018).

    [94] S A Goorden, J Bertolotti, A P Mosk. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Optics Express, 22, 17999-18009(2014).

    [95] W L Chan, M L Moravec, R G Baraniuk, et al. Terahertz imaging with compressed sensing and phase retrieval. Optics Letters, 33, 974-976(2008).

    [96] R Horisaki, Y Ogura, M Aino, et al. Single-shot phase imaging with a coded aperture. Optics Letters, 39, 6466-6469(2014).

    CLP Journals

    [1] Xu Yang, Yue Ran, Wei Zhou, Baoteng Xu, Jialin Liu, Xibin Yang. Full-color single-pixel endoscopic imaging system[J]. Infrared and Laser Engineering, 2023, 52(10): 20230077

    Ruifeng Liu, Shupeng Zhao, Fuli Li. Single-pixel complex amplitude imaging (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210735
    Download Citation