• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20220127 (2022)
Xin Cheng1、2, Huawei Jiang1, and Yan Feng1、3
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    DOI: 10.3788/IRLA20220127 Cite this Article
    Xin Cheng, Huawei Jiang, Yan Feng. Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220127 Copy Citation Text show less
    References

    [1] A Bellemare. Continuous-wave silica-based erbium-doped fiber lasers. Progress in Quantum Electronics, 27, 211-266(2003).

    [2] J L Wagener, P F Wysocki, M J F Digonnet, et al. Effects of concentration and clusters in erbium-doped fiber lasers. Optics Letters, 18, 2014-2016(1993).

    [3] Yang Z, Li C, Xu S, et al. SingleFrequency Fiber Lasers[M]. Singape: Springer Nature, 2019.

    [4] P R Morkel, G J Cowle, D N Payne. Travelling-wave erbium fiber ring laser with 60 kHz linewidth. Electronics Letters, 26, 632-634(1990).

    [5] K Iwatsuki, H Okamura, M Saruwatari. Wavelength-tunable single-frequency and single-polarisation Er-doped fiber ring-laser with 1.4 kHz linewidth. Electronics Letters, 26, 2033-2035(1990).

    [6] D A Smith, M W Maeda, J J Johnson, et al. Acoustically tuned erbium-doped fiber ring laser. Optics Letters, 16, 387-389(1991).

    [7] H Schmuck, T Pfeiffer, G Veith. Widely tunable narrow linewidth erbium doped fiber ring laser. Electronics Letters, 27, 2117-2119(1991).

    [8] J L Zyskind, J W Sulhoff, Y Sun, et al. Singlemode diode-pumped tunable erbium-doped fiber laser with linewidth less than 5.5 kHz. Electronics Letters, 27, 2148-2149(1991).

    [9] Y Cheng, J T Kringlebotn, W H Loh, et al. Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter. Optics Letters, 20, 875-877(1995).

    [10] Y W Song, S A Havstad, D Starodubov, et al. 40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG. IEEE Photonics Technology Letters, 13, 1167-1169(2001).

    [11] H X Chen, F Babin, M Leblanc, et al. Widely tunable single-frequency erbium-doped fiber lasers. IEEE Photonics Technology Letters, 15, 185-187(2003).

    [12] H C Chien, C H Yeh, C C Lee, et al. A tunable and single-frequency s-band erbium fiber laser with saturable-absorber-based autotracking filter. Optics Communications, 250, 163-167(2005).

    [13] C H Yeh, M C Lin, S Chi. Stabilized and wavelength-tunable s-band erbium-doped fiber ring laser with single-longitudinal-mode operation. Optics Express, 13, 6828-6832(2005).

    [14] A Polynkin, P Polynkin, M Mansuripur, et al. Single-frequency fiber ring laser with 1 W output power at 1.5 µm. Optics Express, 13, 3179-3184(2005).

    [15] X X Yang, L Zhan, Q S Shen, et al. High-power single-longitudinal-mode fiber laser with a ring Fabry-Perot resonator and a saturable absorber. IEEE Photonics Technology Letters, 20, 879-881(2008).

    [16] J L Zhang, C Y Yue, G W Schinn, et al. Stable single-mode compound-ring erbium-doped fiber laser. Journal of Lightwave Technology, 14, 104-109(1996).

    [17] C C Lee, S Chi. Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback. Optics Letters, 25, 1774-1776(2000).

    [18] C C Lee, Y K Chen, S K Liaw. Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission. Optics Letters, 23, 358-360(1998).

    [19] Z Xin, Hua Z Ning, X Liang, et al. Stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking. Journal of Lightwave Technology, 25, 1027-1033(2007).

    [20] C H Yeh, T T Huang, H C Chien, et al. Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation. Optics Express, 15, 382-386(2007).

    [21] S Pan, J Yao. A Wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability. IEEE Photonics Technology Letters, 22, 413-415(2010).

    [22] A Salehiomran, M Rochette. An all-pole-type cavity based on smith predictor to achieve single longitudinal mode fiber lasers. IEEE Photonics Technology Letters, 25, 2141-2144(2013).

    [23] T Feng, F Yan, W Peng, . et al. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure. Laser Physics Letters, 11, 045101(2014).

    [24] C Yang, X Cen, S Xu, et al. Research progress of single-frequency fiber laser. Acta Optica Sinica, 41, 0114002(2021).

    [25] C Yang, S Xu, C Li, et al. Research progress of 1.5 μm-band CW single-frequency fiber laser. Scientia Sinica Chimica, 43, 1407-1417(2013).

    [26] S J Fu, W Shi, Y Feng, et al. Review of recent progress on single-frequency fiber lasers invited. Journal of the Optical Society of America B-Optical Physics, 34, A49-A62(2017).

    [27] W Lai, P Ma, H Xiao, et al. High-power narrow-linewidth fiber laser technology. High Power Laser and Particle Beams, 32, 121001(2020).

    [28] G A Ball, W W Morey, W H Glenn. Standing-wave monomode erbium fiber laser. IEEE Photonics Technology Letters, 3, 613-615(1991).

    [29] G A Ball, W W Morey. Compression-tuned single-frequency Bragg grating fiber laser. Optics Letters, 19, 1979-1981(1994).

    [30] Y N Zhang, Y F Zhang, Q L Zhao, et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser. Optics Express, 24, 26209-26214(2016).

    [31] C S Yang, X C Guan, W Lin, et al. Efficient 1.6 μm linearly-polarized single-frequency phosphate glass fiber laser. Optics Express, 25, 29078-29085(2017).

    [32] Spiegelberg C, Geng J, Hu Y, et al. Compact 100 mW fiber laser with 2 kHz linewidth [C] Optical Fiber Communications Conference, 2003, 3: PD45P1.

    [33] C Spiegelberg, J H Geng, Y D Hu, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003). Journal of Lightwave Technology, 22, 57-62(2004).

    [34] P Polynkin, A Polynkin, M Mansuripur, et al. Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique. Optics Letters, 30, 2745-2747(2005).

    [35] T Qiu, S Suzuki, A Schulzgen, et al. Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers. Optics Letters, 30, 2748-2750(2005).

    [36] A Schulzgen, L Li, V L Temyanko, et al. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber. Optics Express, 14, 7087-7092(2006).

    [37] Z Pan, H Cai, L Meng, et al. Single-frequency phosphate glass fiber laser with 100-mw output power at 1535 nm and its polarization characteristics. Chinese Optics Letters, 8, 52-54(2010).

    [38] S H Xu, Z M Yang, T Liu, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm. Optics Express, 18, 1249-1254(2010).

    [39] S H Chang, I K Hwang, B Y Kim, et al. Widely tunable single-frequency Er-doped fiber laser with long linear cavity. IEEE Photonics Technology Letters, 13, 287-289(2001).

    [40] Kaneda Y, Hu Y, Spiegelberg C, et al. Singlefrequency, allfiber Qswitched laser at 1550 nm[C] Proceedings of the Advanced SolidState Photonics (TOPS), 2004.

    [41] R Zhou, W Shi, E Petersen, et al. Transform-limited, injection seeded, Q-switched, ring cavity fiber laser. Journal of Lightwave Technology, 30, 2589-2595(2012).

    [42] H D Wan, Z W Wu, X H Sun. A pulsed single-longitudinal-mode fiber laser based on gain control of pulse-injection-locked cavity. Optics Laser Technology, 48, 167-170(2013).

    [43] W Shi, M A Leigh, J Zong, et al. High-power all-fiber-based narrow-linewidth single-mode fiber laser pulses in The C-Band and frequency conversion to THz generation. IEEE Journal of Selected Topics in Quantum Electronics, 15, 377-384(2009).

    [44] M Leigh, W Shi, J Zong, et al. High peak power single frequency pulses using a short polarization-maintaining phosphate glass fiber with a large core. Applied Physics Letters, 92, 1-3(2008).

    [45] W Shi, E B Petersen, M Leigh, et al. High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band. Opt Express, 17, 8237-8245(2009).

    [46] W Shi, E B Petersen, Z D Yao, et al. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm. Optics Letters, 35, 2418-2420(2010).

    [47] E Petersen, W Shi, A Chavez-pirson, et al. High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses. Applied Optics, 51, 531-534(2012).

    [48] Y Liu, J Q Liu, W B Chen. Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar. Chinese Optics Letters, 9, 090604(2011).

    [49] W Lee, J Geng, S Jiang, et al. 1.8 mJ, 3.5 kW single-frequency optica pulses at 1572 nm generated from an all-fiber MOPA system. Optics Letters, 43, 2264-2267(2018).

    [50] X Zhang, W F Diao, Y Liu, et al. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361 W. Applied Optics, 53, 2465-2469(2014).

    [51] G A Ball, C E Holton, G Hullallen, et al. 60-mW 1.5 μm single-frequency low-noise fiber laser MOPA. IEEE Photonics Technology Letters, 6, 192-194(1994).

    [52] J J Pan, Y Shi. 166-mW single-frequency output power interactive fiber lasers with low noise. IEEE Photonics Technology Letters, 11, 36-38(1999).

    [53] Y Jeong, J K Salm, D J Richardson, et al. Seeded erbium/ytterbium codoped fiber amplifier source with 87 W of single-frequency output power. Electronics Letters, 39, 1717-1719(2003).

    [54] Alam S U, Wixey R, Hickey L, et al. High power, singlemode, singlefrequency DFB fiber laser at 1550 nm in MOPA configuration[C]Proceedings of the Conference on Lasers ElectroOptics, 2004 (CLEO), F, 2004.

    [55] C Alegria, Y Jeong, C Codemard, et al. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber. IEEE Photonics Technology Letters, 16, 1825-1827(2004).

    [56] Y Jeong, J K Sahu, D B S Soh, et al. High-power tunable single-frequency single-mode erbium: ytterbium codoped large-core fiber master-oscillator power amplifier source. Optics Letters, 30, 2997-2999(2005).

    [57] M Dubinskii, J Zhang, I Kudryashov. Single-frequency, Yb-free, resonantly cladding-pumped large mode area Er fiber amplifier for power scaling. Applied Physics Letters, 93, 1-3(2008).

    [58] C S Yang, S H Xu, S P Mo, et al. 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA Laser at 1560 nm. Optics Express, 21, 12546-12551(2013).

    [59] M Steinke, A Croteau, C Pare, et al. Co-seeded Er3+: Yb3+ single frequency fiber amplifier with 60 w output power and over 90% TEM00 content. Optics Express, 22, 16722-16730(2014).

    [60] X L Bai, Q Sheng, H W Zhang, et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier. IEEE Photonics Journal, 7, 6(2015).

    [61] Creeden D, Pretius H, Limongelli J, et al. Single frequency 1560 nm Er: Yb fiber amplifier with 207 W output power 50.5% slope efficiency[C]Proceedings of the Conference on Fiber Lasers XIII Technology, Systems, Applications, F, 2016.

    [62] Varona O De, W Fittkau, P Booker, et al. Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 Mode for next-generation gravitational wave detectors. Optics Express, 25, 24880-24892(2017).

    [63] C S Yang, X C Guan, Q L Zhao, et al. 15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA a 1.6 μm. Optics Express, 26, 12863-12869(2018).

    [64] X C Guan, Q L Zhao, W Lin, et al. High-efficiency and high-power single-frequency fiber laser at 1.6 μm based on cascaded energy-transfer pumping. Photonics Research, 8, 414-420(2020).

    [65] M Y Xue, C X Gao, L Q Niu, et al. A 51.3 W, sub-kHz-linewidth linearly polarized all-fiber laser at 1560 nm. Laser Physics, 30, 035104(2020).

    [66] D Darwich, Y V Bardin, M Goeppner, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm. Applied Optics, 60, 8550-8555(2021).

    [67] Kuhn V, Kracht D, Neumann J, et al. Erdoped singlefrequency photonic crystal fiber amplifier with 70 W of output power f gravitational wave detection[C]Proceedings of the Conference on Fiber Lasers IX Technology, Systems, Applications, 2012.

    [68] A Fujisaki, S Matsushita, K Kasai, et al. An 11.6 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a 13C2H2 frequency stabilized fiber laser. Optics Express, 23, 1081-1087(2015).

    [69] J Y Dong, X Zeng, S Z Cui, et al. More than 20 W fiber-based continuous-wave single frequency laser at 780 nm. Optics Express, 27, 35362-35367(2019).

    [70] Alam S, Ylajarkko K H, Grudinin A B. High power, single frequency DFB fiber laser with low relative intensity noise[C] Proceedings of the 2003 Conference on Lasers ElectroOptics Europe (CLEOEurope 2003) (IEEE Cat No03 TH8666), 2003: 618.

    [71] Varona O De, M Steinke, J Neumann, et al. All-fiber, single-frequency, and single-mode Er3+:Yb3+ fiber amplifier at 1556 nm core-pumped at 1018 nm. Optics Letters, 43, 2632-2635(2018).

    [72] S Wang, Z Liu, Z Zhao, et al. 18 W Single-frequency 1550 nm Er: Yb co-doped fiber amplifier cladding-pumping at 1018 nm. Optics Communications, 464, 125498(2020).

    [73] V Kuhn, D Kracht, J Neumann, et al. Dependence of Er: Yb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength. Optics Letters, 35, 4105-4107(2010).

    [74] G Sobon, D Sliwinska, P Kaczmarek, et al. Er/Yb co-doped fiber amplifier with wavelength-tuned Yb-band ring resonator. Optics Communications, 285, 3816-3819(2012).

    [75] M Dubinskii, J Zhang, V Ter-mikirtychev. Record-efficient, resonantly-pumped, Er-doped single mode fiber amplifier. Electronics Letters, 45, 400-401(2009).

    [76] V R Supradeepa, J W Nicholson. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. Optics Letters, 38, 2538-2541(2013).

    Xin Cheng, Huawei Jiang, Yan Feng. Research progress of high-power single-frequency erbium-doped fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220127
    Download Citation