• Laser & Optoelectronics Progress
  • Vol. 57, Issue 13, 131601 (2020)
Fangyuan Lu, Xingbin Yan, Wei Lin, and Zhiwei Zheng*
Author Affiliations
  • College of Physics and Electronic Science, Hunan Normal University, Changsha, Hunan 410081, China
  • show less
    DOI: 10.3788/LOP57.131601 Cite this Article Set citation alerts
    Fangyuan Lu, Xingbin Yan, Wei Lin, Zhiwei Zheng. Control of Goos-Hänchen Shift Based on Graphene/Hexagonal Boron Nitride Heterostructure[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131601 Copy Citation Text show less
    References

    [1] Goos F, Hänchen H. Ein neuer und fundamentaler Versuch zur Totalreflexion[J]. Annalen Der Physik, 436, 333-346(1947).

    [2] Sakata T, Togo H, Shimokawa F. Reflection-type 2×2 optical waveguide switch using the Goos-Hänchen shift effect[J]. Applied Physics Letters, 76, 2841-2843(2000).

    [3] Yu T Y, Li H G, Cao Z Q et al. Oscillating wave displacement sensor using the enhanced Goos-Hänchen effect in a symmetrical metal-cladding optical waveguide[J]. Optics Letters, 33, 1001-1003(2008).

    [4] Wang X P, Yin C, Sun J J et al. High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect[J]. Optics Express, 21, 13380-13385(2013).

    [5] Chen F, Hao J, Li H G et al. Double-channel narrowband filter based on Goos-Hänchen shift[J]. Acta Physica Sinica, 60, 074223(2011).

    [6] Wang C, Wang Z P, Zhang Z H. Goos-Hänchen shift at the inner interface of a composed rhomboid prism made of left-handed materials[J]. Acta Photonica Sinica, 37, 2321-2326(2008).

    [7] Bonnet C, Chauvat D, Emile O et al. Measurement of positive and negative Goos-Hänchen effects for metallic gratings near Wood anomalies[J]. Optics Letters, 26, 666-668(2001).

    [8] Cheng M, Fu P, Weng M H et al. Spatial and angular shifts of terahertz wave for the graphene metamaterial structure[J]. Journal of Physics D: Applied Physics, 48, 285105(2015).

    [9] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [10] Wang Y, Leng Y B, Dong L H et al. Design of tunable metamaterial absorber based on graphene-metal hybrid structure[J]. Acta Optica Sinica, 38, 0716001(2018).

    [11] Guo J, Wu L M, Dai X Y et al. Absorption enhancement and total absorption in a graphene-waveguide hybrid structure[J]. AIP Advances, 7, 025101(2017).

    [12] Gao M S, Luo Z M, Zhou H M et al. Precise control of Goos-Hänchen shift based on dielectric and graphene coating[J]. Chinese Journal of Lasers, 44, 0703019(2017).

    [13] Cheng M, Fu P, Chen X Y et al. Giant and tunable Goos-Hänchen shifts for attenuated total reflection structure containing graphene[J]. Journal of the Optical Society of America B, 31, 2325-2329(2014).

    [14] Plötzing T, Winzer T, Malic E et al. Experimental verification of carrier multiplication in graphene[J]. Nano Letters, 14, 5371-5375(2014).

    [15] You Q, Shan Y X, Gan S W et al. Giant and controllable Goos-Hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure[J]. Optical Materials Express, 8, 3036-3048(2018).

    [16] Jiang L Y, Wang Q K, Xiang Y J et al. Electrically tunable Goos-Hänchen shift of light beam reflected from a graphene-on-dielectric surface[J]. IEEE Photonics Journal, 5, 6500108(2013).

    [17] Tang T T, Li J, Zhu M et al. Realization of tunable Goos-Hänchen effect with magneto-optical effect in graphene[J]. Carbon, 135, 29-34(2018).

    [18] Li Z W, Lu H, Li Y W et al. Near-infrared light absorption enhancement in graphene induced by the Tamm state in optical thin films[J]. Acta Optica Sinica, 39, 0131001(2019).

    [19] Yue F Y, Mao F, Wang H et al. Infrared defect emission and thermal effect in high power diode lasers[J]. Laser & Optoelectronics Progress, 56, 110001(2019).

    [20] Jia Y C, Zhao H, Guo Q S et al. Tunable plasmon-phonon polaritons in layered graphene-hexagonal boron nitride heterostructures[J]. ACS Photonics, 2, 907-912(2015).

    [21] Hajian H, Ghobadi A, Dereshgi S A et al. Hybrid plasmon-phonon polariton bands in graphene-hexagonal boron nitride metamaterials [Invited][J]. Journal of the Optical Society of America B, 34, D29-D35(2017).

    [22] Hajati Y, Zanbouri Z, Sabaeian M. Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide[J]. Journal of the Optical Society of America B, 35, 446-453(2018).

    [23] Wu J P, Jiang L Y, Guo J et al. Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal[J]. Optics Express, 24, 17103-17114(2016).

    [24] Zhan T R, Shi X, Dai Y Y et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics: Condensed Matter, 25, 215301(2013).

    [25] Hanson G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. Journal of Applied Physics, 103, 064302(2008).

    [26] Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers[J]. ACS Nano, 5, 5855-5863(2011).

    [27] Woessner A, Lundeberg M B, Gao Y D et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 14, 421-425(2015).

    Fangyuan Lu, Xingbin Yan, Wei Lin, Zhiwei Zheng. Control of Goos-Hänchen Shift Based on Graphene/Hexagonal Boron Nitride Heterostructure[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131601
    Download Citation