• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011003 (2021)
Wenlin Gong1、2、*†, Jianfeng Sun3、†, Chenjin Deng2, Zhiyong Lu3、**, Yu Zhou3, and Shensheng Han2、***
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • 2Key Laboratory for Quantum Optics of CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
  • 3Key Laboratory of Space Laser Communication and Detection Technology of CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
  • show less
    DOI: 10.3788/LOP202158.1011003 Cite this Article Set citation alerts
    Wenlin Gong, Jianfeng Sun, Chenjin Deng, Zhiyong Lu, Yu Zhou, Shensheng Han. Research Progress on Single-Pixel Imaging Lidar via Coherent Detection[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011003 Copy Citation Text show less
    References

    [1] Shapiro J H, Capron B A, Harney R C. Imaging and target detection with a heterodyne-reception optical radar[J]. Applied Optics, 20, 3292-3313(1981).

    [2] Mcmanamon P, Buell W, Choi M et al. Laser radar: progress and opportunities in active electro-optical sensing[M](2014).

    [3] Bashkansky M, Lucke R L, Funk E et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 27, 1983-1985(2002). http://www.ncbi.nlm.nih.gov/pubmed/18033419?dopt=Abstract

    [4] Lucke R L, Rickard L J, Bashkansky M et al. Synthetic aperture ladar (SAL): fundamental theory, design equations for a satellite system, and laboratory demonstration[R]. Defense Technical Information Center(2002).

    [5] Beck S M, Buck J R, Buell W F et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Applied Optics, 44, 7621-7629(2005).

    [6] Buell W, Marechal N, Buck J et al. Demonstration of synthetic aperture imaging ladar[J]. Proceedings of SPIE, 5791, 152-166(2005). http://spie.org/Publications/Proceedings/Paper/10.1117/12.609682

    [7] Muller R A, Buffington A. Real-time correction of atmospherically degraded telescope images through image sharpening[J]. Journal of the Optical Society of America, 64, 1200-1210(1974). http://www.opticsinfobase.org/abstract.cfm?uri=josa-64-9-1200

    [8] Liu L R. Synthetic aperture imaging ladar(V): imaging resolution and antenna aperture function[J]. Acta Optica Sinica, 29, 1408-1415(2009).

    [9] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [10] Du J, Gong W, Han S. The influence of sparsity property of images on ghost imaging with thermal light[J]. Optics Letters, 37, 1067-1069(2012). http://www.ncbi.nlm.nih.gov/pubmed/22446227

    [11] Kirmani A, Venkatraman D, Shin D et al. First-photon imaging[J]. Science, 343, 58-61(2014).

    [12] Pawlikowska A M, Halimi A, Lamb R A et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 25, 11919-11931(2017). http://europepmc.org/abstract/MED/28788749

    [13] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6325241

    [14] Gong W, Han S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Report, 5, 9280(2015). http://www.ncbi.nlm.nih.gov/pubmed/25787897

    [15] Li E, Bo Z, Chen M et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 104, 251120(2014).

    [16] Li X H, Deng C J, Chen M L et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 3, 153-157(2015).

    [17] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730129

    [18] Gong W, Zhao C, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Report, 6, 26133(2016). http://europepmc.org/articles/PMC4868975/

    [19] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016). http://www.ncbi.nlm.nih.gov/pubmed/27377197

    [20] Deng C J, Gong W L, Han S S. Pulse-compression ghost imaging lidar via coherent detection[J]. Optics Express, 24, 25983-25994(2016). http://www.ncbi.nlm.nih.gov/pubmed/27857337

    [21] Deng C J, Pan L, Wang C L et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 5, 431-435(2017).

    [22] Pan L, Deng C J, Gong W L et al. Experimental demonstration of pulse-compression ghost imaging via coherent detection[J]. Proceedings of SPIE, 11567, 115670S(2020). http://www.researchgate.net/publication/346698672_Experimental_demonstration_of_pulse-compression_ghost_imaging_via_coherent_detection

    [23] Krause B W, Buck J, Ryan C et al. Synthetic aperture ladar flight demonstration[C]. //CLEO: 2011-Laser Science to Photonic Applications, May 1-6, 2011, Baltimore, MD, USA, 1-2(2011).

    [24] Lu Z Y, Zhou Y, Sun J F et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chinese Journal of Lasers, 44, 0110001(2017).

    [25] Li G Y, Lu Z Y, Zhou Y et al. Far-field outdoor experimental demonstration of down-looking synthetic aperture ladar[J]. Chinese Optics Letters, 15, 082801(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ93ed53ac38f27a48

    [26] Li G Y, Sun J F, Zhou Y et al. Attitude-error compensation for airborne down-looking synthetic-aperture imaging lidar[J]. Optics Communications, 402, 355-361(2017).

    [27] Zhang K S, Pan J, Wang R et al. Study of wide swath synthetic aperture ladar imaging techology[J]. Journal of Radars, 6, 1-10(2017).

    [28] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018). http://arxiv.org/abs/1709.01016

    [29] Ferri F, Magatti D, Gatti A et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 94, 183602(2005). http://europepmc.org/abstract/MED/15904368

    [30] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008). http://scitation.aip.org/content/aip/journal/apl/93/12/10.1063/1.2989126

    [31] Liu H C, Zhang S. Computational ghost imaging of hot objects in long-wave infrared range[J]. Applied Physics Letters, 111, 031110(2017). http://adsabs.harvard.edu/abs/2017ApPhL.111c1110L

    [32] Guo Y Y, He X Z, Wang D J. A novel super-resolution imaging method based on stochastic radiation radar array[J]. Measurement Science and Technology, 24, 074013(2013). http://adsabs.harvard.edu/abs/2013MeScT..24g4013G

    [33] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [34] Chen M L, Li E R, Gong W L et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 3, 83-85(2013). http://www.oalib.com/paper/2989188

    [35] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 29, 782-789(2012).

    [36] Gong W L, Yu H, Zhao C Q et al. Improving the imaging quality of ghost imaging lidar via sparsity constraint by time-resolved technique[J]. Remote Sensing, 8, 991(2016). http://www.researchgate.net/publication/311357650_Improving_the_Imaging_Quality_of_Ghost_Imaging_Lidar_via_Sparsity_Constraint_by_Time-Resolved_Technique/download

    [37] Wang C L, Mei X D, Pan L et al. Airborne near infrared three-dimensional ghost imaging LiDAR via sparsity constraint[J]. Remote Sensing, 10, 732(2018). http://www.ingentaconnect.com/content/doaj/20724292/2018/00000010/00000005/art00066

    [38] Mei X D, Wang C L, Pan L et al. Experimental demonstration of vehicle-borne near infrared three-dimensional ghost imaging LiDAR[C]. //Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, JW2A.7(2019).

    [39] Liu X L, Shi J H, Sun L et al. Photon-limited single-pixel imaging[J]. Optics Express, 28, 8132-8144(2020). http://www.researchgate.net/publication/339308452_Photon-limited_Single-pixel_Imaging/download

    [40] Jakowatz C V Jr, Wahl D E, Eichel P H et al. Spotlight-mode synthetic aperture radar: a signal processing approach[M](1996).

    [41] Ricklin J, Schumm B, Dierking M et al. Synthetic aperture ladar for tactical imaging(SALTI)[R]. DARPA Straegic Technology Office(2007).

    [42] Ricklin J C, Tomlinson P G. Active imaging at DARPA[J]. Proceeding of SPIE, 5895, 589505(2005).

    [43] Buck J R, Krause B W, Malm A I R et al. Synthetic aperture imaging at optical wavelengths[C]. //Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, June 2-4, 2009, Baltimore, Maryland. Washington, D.C.: OSA, PThB3(2009).

    [44] Gatt P, Jacob D, Bradford B et al. Performance bounds of the phase gradient autofocus algorithm for synthetic aperture ladar[J]. Proceeding of SPIE, 7323, 73230P(2009). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=778010

    [45] Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 20, 24237-24246(2012). http://europepmc.org/abstract/MED/23187186

    [46] Barber Z W, Dahl J R. Synthetic aperture ladar imaging demonstrations and information at very low return levels[J]. Applied Optics, 53, 5531-5537(2014).

    [48] Liu L R. Antenma aperture and imaging resolution of synthetic aperture imaging ladar[J]. Proceedings of SPIE, 7468, 74680R(2009).

    [49] Zhou Y, Sun J F, Luan Z et al. Aperture-synthesizing experiment of a down-scaled synthetic aperture imaging ladar[J]. Acta Optica Sinica, 28, 2446-2448(2008).

    [50] Zhou Y, Yan A M, Xu N et al. A multi-purpose SAIL demonstrator design and its principle experimental verification[J]. Proceedings of SPIE, 7468, 74680S(2009). http://spie.org/Publications/Proceedings/Paper/10.1117/12.825436

    [51] Liu L R, Zhou Y, Zhi Y N et al. A large-aperture synthetic aperture imaging ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 31, 0900112(2011).

    [52] Liu L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 52, 579-599(2013). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-52-4-579

    [53] Li F, Wu S Y, Zheng Y C et al. Overview of the development of synthetic aperture lidar[J]. Infrared and Laser Engineering, 35, 55-65(2006).

    [54] Wu J, Yang Z S, Zhao Z L et al. Synthetic aperture ladar imaging with one-way far-field diffraction[J]. Journal of Infrared and Millimeter Waves, 32, 514-518, 525(2013).

    [55] Zhao Z L, Wu J, Su Y Y et al. Three-dimensional imaging interferometric synthetic aperture ladar[J]. Chinese Optics Letters, 12, 091101(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJbd3ca4456dc0f9a4

    [56] Liu L R. Principle of down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 32, 0920002(2012).

    [57] Luan Z, Sun J F, Zhi Y N et al. Two-dimensional imaging experiment of down-looking synthetic aperture ladar under simulated far-field conditions[J]. Acta Optica Sinica, 34, 0710003(2014).

    [58] Luan Z, Sun J F, Zhou Y et al. Down-looking synthetic aperture imaging ladar demonstrator and its experiments over 1.2 km outdoor[J]. Chinese Optics Letters, 12, 111101(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ65d5c0d759b38e3

    [59] Lu Z Y, Zhang N, Sun J F et al. Laboratory demonstration of static-mode down-looking synthetic aperture imaging ladar[J]. Chinese Optics Letters, 13, 042801(2015). http://www.opticsjournal.net/Articles/Abstract?aid=OJ5b094fcd9672dd2d

    [60] Bennink R S, Bentley S J, Boyd R W et al. Quantum and classical coincidence imaging[J]. Physical Review Letters, 92, 033601(2004). http://www.ncbi.nlm.nih.gov/pubmed/14753874

    [61] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004). http://europepmc.org/abstract/MED/15089466

    [62] Angelo M D, Shih Y H. Quantum imaging[J]. Laser Physics Letters, 2, 567-596(2005).

    [63] Shapiro J H, Boyd R W. The physics of ghost imaging[J]. Quantum Information Processing, 11, 949-993(2012). http://smartsearch.nstl.gov.cn/paper_detail.html?id=fb9fef773a2f90d837ee2b2d877c8b6b

    [64] Yang X, Zhang Y, Yang C H et al. Heterodyne 3D ghost imaging[J]. Optics Communications, 368, 1-6(2016).

    [65] Pan L, Deng C J, Gong W L et al. Influence of chirped-amplitude correlated imaging under incoherent detection[J]. Acta Optica Sinica, 38, 1011001(2018).

    [66] Pan L, Deng C J, Bo Z W et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging[J]. Optics Express, 28, 20808-20816(2020).

    [67] Pan L. Research on chirped-amplitude modulation ghost imaging lidar[D], 96-105(2020).

    Wenlin Gong, Jianfeng Sun, Chenjin Deng, Zhiyong Lu, Yu Zhou, Shensheng Han. Research Progress on Single-Pixel Imaging Lidar via Coherent Detection[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011003
    Download Citation