• Advanced Photonics
  • Vol. 3, Issue 5, 054001 (2021)
Stefania Castelletto1、* and Alberto Boretti2
Author Affiliations
  • 1RMIT University, School of Engineering, Bundoora, Australia
  • 2Prince Mohammad Bin Fahd University, Deanship of Research, Al Khobar, Saudi Arabia
  • show less
    DOI: 10.1117/1.AP.3.5.054001 Cite this Article Set citation alerts
    Stefania Castelletto, Alberto Boretti. Color centers in wide-bandgap semiconductors for subdiffraction imaging: a review[J]. Advanced Photonics, 2021, 3(5): 054001 Copy Citation Text show less
    References

    [1] L. Möckl, D. C. Lamb, C. Bräuchle. Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angew. Chem. Int. Ed., 53, 13972-13977(2014).

    [2] L. Schermelleh et al. Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72-84(2019).

    [3] S. Banerjee, S. Maurya, R. Roy. Single-molecule fluorescence imaging: generating insights into molecular interactions in virology. J. Biosci., 43, 519-540(2018).

    [4] S. Castelletto, A. Boretti. Viral particle imaging by super-resolution fluorescence microscopy. Chem. Phys. Impact, 2, 100013(2021).

    [5] S. Dhomkar et al. Long-term data storage in diamond. Sci. Adv., 2, e1600911(2016).

    [6] M. Gu, Q. Zhang, S. Lamon. Nanomaterials for optical data storage. Nat. Rev. Mater., 3, 16070(2016).

    [7] J.-P. Tetienne et al. Quantum imaging of current flow in graphene. Sci. Adv., 3, e1602429(2017).

    [8] F. Casola, T. van der Sar, A. Yacoby. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater., 3, 17088(2018).

    [9] D. Jin et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods, 15, 415-423(2018).

    [10] I. Aharonovich et al. Diamond-based single-photon emitters. Rep. Prog. Phys., 74, 076501(2011).

    [11] C. Bradac et al. Quantum nanophotonics with group IV defects in diamond. Nat. Commun., 10, 5625(2019).

    [12] A. Gruber et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science, 276, 2012-2014(1997).

    [13] D. Ho, C.-H. K. Wang, E. K.-H. Chow. Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv., 3, e1500439(2015).

    [14] A. Lohrmann et al. A review on single photon sources in silicon carbide. Rep. Prog. Phys., 80, 034502(2017).

    [15] S. Castelletto, A. Boretti. Silicon carbide color centers for quantum applications. J. Phys. Photonics, 2, 022001(2020).

    [16] S. Castelletto et al. A silicon carbide room-temperature single-photon source. Nat. Mater., 13, 151-156(2014).

    [17] S. Castelletto et al. Room temperature quantum emission from cubic silicon carbide nanoparticles. ACS Nano, 8, 7938-7947(2014).

    [18] W. F. Koehl et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 479, 84-87(2011).

    [19] D. J. Christle et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater., 14, 160-163(2015).

    [20] A. Lohrmann et al. Activation and control of visible single defects in 4h-, 6h-, and 3c-sic by oxidation. Appl. Phys. Lett., 108, 021107(2016).

    [21] A. Oliveros, A. Guiseppi-Elie, S. E. Saddow. Silicon carbide: a versatile material for biosensor applications. Biomed. Microdevices, 15, 353-368(2013).

    [22] J. S. Ponraj et al. Sic nanostructures toward biomedical applications and its future challenges. Crit. Rev. Solid State Mater. Sci., 41, 430-446(2016).

    [23] T. Bělinová et al. Immunomodulatory potential of differently-terminated ultra-small silicon carbide nanoparticles. Nanomaterials, 10, 573(2020).

    [24] F. Hayee et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater., 19, 534-539(2020).

    [25] J. D. Caldwell et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater., 4, 552-567(2019).

    [26] C. Bradac. High-resolution optical imaging and sensing using quantum emitters in hexagonal boron-nitride. Front. Phys., 9, 117(2021).

    [27] L. Horváth et al. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano, 5, 3800-3810(2011).

    [28] A. Salvetti et al. In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians. Nanomedicine, 10, 1911-1922(2015).

    [29] E. Rittweger et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics, 3, 144-147(2009).

    [30] M. H. Alkahtani et al. Fluorescent nanodiamonds: past, present, and future. Nanophotonics, 7, 1423-1453(2018).

    [31] E. Rittweger, D. Wildanger, S. W. Hell. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys. Lett., 86, 14001(2009).

    [32] K. Y. Han et al. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett., 9, 3323-3329(2009).

    [33] M. Gu et al. Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope. Opt. Express, 21, 17639-17646(2013).

    [34] S. Castelletto et al. Production of multiple diamond-based single-photon sources. IEEE J. Sel. Top. Quantum Electron., 18, 1792-1798(2012).

    [35] X. Chen et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci. Appl., 4, e230(2015).

    [36] K. Arai et al. Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. Nat. Nanotechnol., 10, 859-864(2015).

    [37] H. Mamin et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science, 339, 557-560(2013).

    [38] J. Wrachtrup, F. Jelezko. Processing quantum information in diamond. J. Phys. Condens. Matter, 18, S807-S824(2006).

    [39] L. Childress et al. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett., 96, 070504(2006).

    [40] N. Bar-Gill et al. Solid-state electronic spin coherence time approaching one second. Nat. Commun., 4, 1743(2013).

    [41] D. Farfurnik et al. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond. Phys. Rev. B, 92, 060301(2015).

    [42] A. Boretti et al. Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications. Beilstein J. Nanotechnol., 10, 2128-2151(2019).

    [43] J. L. Webb et al. Optimization of a diamond nitrogen vacancy centre magnetometer for sensing of biological signals. Front. Phys., 8, 430(2020).

    [44] E. Bernardi et al. A biocompatible technique for magnetic field sensing at (sub)cellular scale using nitrogen-vacancy centers. EPJ Quantum Technol., 7, 13(2020).

    [45] D. Wildanger, J. R. Maze, S. W. Hell. Diffraction unlimited all-optical recording of electron spin resonances. Phys. Rev. Lett., 107, 017601(2011).

    [46] P. C. Maurer et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nat. Phys., 6, 912-918(2010).

    [47] M. Pfender et al. Single-spin stochastic optical reconstruction microscopy. Proc. Natl. Acad. Sci. U. S. A., 111, 14669-14674(2014).

    [48] M. Barbiero et al. Spin-manipulated nanoscopy for single nitrogen-vacancy center localizations in nanodiamonds. Light Sci. Appl., 6, e17085(2017).

    [49] M. Barbiero et al. Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles. Nanoscale, 12, 8847-8857(2020).

    [50] A. Boretti, S. Castelletto. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks. MethodsX, 3, 297-306(2016).

    [51] P. Wang et al. Nanoscale magnetic imaging of ferritins in a single cell. Sci. Adv., 5, eaau8038(2019).

    [52] M. S. Grinolds et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys., 9, 215-219(2013).

    [53] M. J. Ku et al. Imaging viscous flow of the Dirac fluid in graphene. Nature, 583, 537-541(2020).

    [54] O. Schwartz et al. Superresolution microscopy with quantum emitters. Nano Lett., 13, 5832-5836(2013).

    [55] D. G. Monticone et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. Phys. Rev. Lett., 113, 143602(2014).

    [56] M. Aßmann. Quantum-optically enhanced storm (QUEST) for multi-emitter localization. Sci. Rep., 8, 7829(2018).

    [57] R. Tenne et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photonics, 13, 116-122(2019).

    [58] Y. Nishimura et al. Wide-field fluorescent nanodiamond spin measurements toward real-time large-area intracellular thermometry. Sci. Rep., 11, 4248(2021).

    [59] S. Castelletto et al. Imaging with nanometer resolution using optically active defects in silicon carbide. Phys. Rev. Appl., 14, 034021(2020).

    [60] S. Pezzagna et al. Nanoscale engineering and optical addressing of single spins in diamond. Small, 6, 2117-2121(2010).

    [61] K. Y. Han et al. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Lett., 10, 3199-3203(2010).

    [62] E. Herbschleb et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nat. Commun., 10, 3766(2019).

    [63] J. Storteboom et al. Lifetime investigation of single nitrogen vacancy centres in nanodiamonds. Opt. Express, 23, 11327-11333(2015).

    [64] C. Kurtsiefer et al. Stable solid-state source of single photons. Phys. Rev. Lett., 85, 290-293(2000).

    [65] F. A. Inam et al. Emission and nonradiative decay of nanodiamond NV centers in a low refractive index environment. ACS Nano, 7, 3833-3843(2013).

    [66] A. Mohtashami, A. F. Koenderink. Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments. New J. Phys., 15, 043017(2013).

    [67] T. Plakhotnik, H. Aman. NV-centers in nanodiamonds: how good they are. Diam. Relat. Mater., 82, 87-95(2018).

    [68] P. Reineck et al. Not all fluorescent nanodiamonds are created equal: a comparative study. Part. Part. Syst. Char., 36, 1900009(2019).

    [69] H. S. Knowles, D. M. Kara, M. Atatüre. Observing bulk diamond spin coherence in high-purity nanodiamonds. Nat. Mater., 13, 21-25(2014).

    [70] A. V. Turukhin et al. Picosecond photoluminescence decay of si-doped chemical-vapor-deposited diamond films. Phys. Rev. B, 54, 16448-16451(1996).

    [71] C. Wang et al. Single photon emission from SIV centres in diamond produced by ion implantation. J. Phys. B, 39, 37-41(2005).

    [72] Y. Silani, F. Hubert, V. M. Acosta. Stimulated emission depletion microscopy with diamond silicon vacancy centers. ACS Photonics, 6, 2577-2582(2019).

    [73] L. J. Rogers et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys. Rev. Lett., 113, 263602(2014).

    [74] E. Neu, M. Agio, C. Becher. Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt. Express, 20, 19956-19971(2012).

    [75] E. Neu et al. Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys., 13, 025012(2011).

    [76] G. Laporte, D. Psaltis. Sted imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomed. Opt. Express, 7, 34-44(2016).

    [77] J.-H. Hsu et al. Nonblinking green emission from single H3 color centers in nanodiamonds. Appl. Phys. Lett., 98, 193116(2011).

    [78] D. Beke et al. Room-temperature defect qubits in ultrasmall nanocrystals. J. Phys. Chem. Lett., 11, 1675-1681(2020).

    [79] J.-F. Wang et al. Experimental optical properties of single nitrogen vacancy centers in silicon carbide at room temperature. ACS Photonics, 7, 1611-1616(2020).

    [80] J.-F. Wang et al. Coherent control of nitrogen-vacancy center spins in silicon carbide at room temperature. Phys. Rev. Lett., 124, 223601(2020).

    [81] Z. Mu et al. Coherent manipulation with resonant excitation and single emitter creation of nitrogen vacancy centers in 4H silicon carbide. Nano Lett., 20, 6142-6147(2020).

    [82] R. N. E. Malein et al. Stimulated emission depletion spectroscopy of color centers in hexagonal boron nitride. ACS Photonics, 8, 1007-1012(2021).

    [83] N. Mendelson et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater., 20, 321-328(2021).

    [84] M. K. Boll et al. Photophysics of quantum emitters in hexagonal boron-nitride nano-flakes. Opt. Express, 28, 7475-7487(2020).

    [85] P. Khatri et al. Stimulated emission depletion microscopy with color centers in hexagonal boron nitride. ACS Photonics, 8, 2081-2087(2021).

    [86] A. Gottscholl et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater., 19, 540-545(2020).

    [87] A. Gottscholl et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv., 7, eabf3630(2021).

    [88] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [89] S. W. Hell, M. Kroug. Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl. Phys. B, 60, 495-497(1995).

    [90] S. Bretschneider, C. Eggeling, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett., 98, 218103(2007).

    [91] M. Hofmann et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U. S. A., 102, 17565-17569(2005).

    [92] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [93] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [94] S. Hess, T. Girirajan, M. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [95] B. Huang, M. Bates, X. Zhuang. Super-resolution fluorescence microscopy. Annu. Rev. Biochem., 78, 993-1016(2009).

    [96] G. Huszka, M. A. Gijs. Super-resolution optical imaging: a comparison. Micro Nano Eng., 2, 7-28(2019).

    [97] G. Vicidomini, P. Bianchini, A. Diaspro. STED super-resolved microscopy. Nat. Methods, 15, 173-182(2018).

    [98] U. V. Nägerl et al. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. U. S. A., 105, 18982-18987(2008).

    [99] F. Bottanelli et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun., 7, 10778(2016).

    [100] N. H. Revelo, P. Verveer, S. O. Rizzoli. Application of sted microscopy to cell biology questions. Advanced Fluorescence Microscopy, 213-230(2015).

    [101] Y.-K. Tzeng et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed., 50, 2262-2265(2011).

    [102] N. Prabhakar et al. Sted-tem correlative microscopy leveraging nanodiamonds as intracellular dual-contrast markers. Small, 14, 1701807(2018).

    [103] P. A. Pellett et al. Two-color sted microscopy in living cells. Biomed. Opt. Express, 2, 2364-2371(2011).

    [104] N. Prabhakar et al. Fluorescent and electron-dense green color emitting nanodiamonds for single-cell correlative microscopy. Molecules, 25, 5897(2020).

    [105] F.-J. Hsieh et al. Correlative light-electron microscopy of lipid-encapsulated fluorescent nanodiamonds for nanometric localization of cell surface antigens. Anal. Chem., 90, 1566-1571(2018).

    [106] R. Kolesov et al. Superresolution microscopy of single rare-earth emitters in YAG and H3 centers in diamond. Phys. Rev. Lett., 120, 033903(2018).

    [107] S. V. Bolshedvorskii et al. Single silicon vacancy centers in 10 nm diamonds for quantum information applications. ACS Appl. Nano Mater., 2, 4765-4772(2019).

    [108] M. D. Torelli, N. A. Nunn, O. A. Shenderova. A perspective on fluorescent nanodiamond bioimaging. Small, 15, 1902151(2019).

    [109] J. Jeske et al. Stimulated emission from nitrogen-vacancy centres in diamond. Nat. Commun., 8, 14000(2017).

    [110] A. Sajid, M. J. Ford, J. R. Reimers. Single-photon emitters in hexagonal boron nitride: a review of progress. Rep. Prog. Phys., 83, 044501(2020).

    [111] S. Castelletto et al. Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface. Beilstein J. Nanotechnol., 11, 740-769(2020).

    [112] D. Wildanger et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-Ångström emitter localization. Adv. Mater., 24, OP309-OP313(2012).

    [113] F. Jelezko et al. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett., 92, 076401(2004).

    [114] S. Arroyo-Camejo et al. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals. ACS Nano, 7, 10912-10919(2013).

    [115] J.-C. Jaskula et al. Superresolution optical magnetic imaging and spectroscopy using individual electronic spins in diamond. Opt. Express, 25, 11048-11064(2017).

    [116] H. Zhang et al. Selective addressing of solid-state spins at the nanoscale via magnetic resonance frequency encoding. npj Quantum Inf., 3, 31(2017).

    [117] I. Testa et al. Nanoscopy of living brain slices with low light levels. Neuron, 75, 992-1000(2012).

    [118] J. Storterboom et al. Ground-state depletion nanoscopy of nitrogen-vacancy centres in nanodiamonds. Nanoscale Res. Lett., 16, 44(2021).

    [119] M. Kianinia et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun., 9, 874(2018).

    [120] X. Yang et al. Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination. RSC Adv., 4, 11305-11310(2014).

    [121] S. A. Jones et al. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods, 8, 499-505(2011).

    [122] R. Strack. Deep learning advances super-resolution imaging. Nat. Methods, 15, 403(2018).

    [123] F. Wang et al. Editorial: recent advances in fluorescent probes for super-resolution microscopy. Front. Chem., 9, 698531(2021).

    [124] E. Nehme et al. Deep-storm: super-resolution single-molecule microscopy by deep learning. Optica, 5, 458-464(2018).

    [125] M. Alkahtani et al. Growth of high-purity low-strain fluorescent nanodiamonds. ACS Photonics, 6, 1266-1271(2019).

    [126] M. Motlag et al. Molecular-scale nanodiamond with high-density color centers fabricated from graphite by laser shocking. Cell Rep. Phys. Sci., 3, 100054(2020).

    [127] C. Laube et al. Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. Nanoscale, 11, 1770-1783(2019).

    [128] Y. Huang et al. Superresolution localization of nitrogen-vacancy centers in diamond with quantum-controlled photoswitching. Phys. Rev. A, 102, 040601(2020).

    [129] J. Feng et al. Imaging of optically active defects with nanometer resolution. Nano Lett., 18, 1739-1744(2018).

    [130] J. Comtet et al. Wide-field spectral super-resolution mapping of optically active defects in hexagonal boron nitride. Nano Lett., 19, 2516-2523(2019).

    [131] N. M. H. Duong et al. Facile production of hexagonal boron nitride nanoparticles by cryogenic exfoliation. Nano Lett., 19, 5417-5422(2019).

    [132] J. Comtet et al. Direct observation of water-mediated single-proton transport between HBN surface defects. Nat. Nanotechnol., 15, 598-604(2020).

    [133] F. Chen et al. Cellular toxicity of silicon carbide nanomaterials as a function of morphology. Biomaterials, 179, 60-70(2018).

    [134] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Methods, 2, 932-940(2005).

    [135] T. J. Gould et al. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express, 20, 20998-21009(2012).

    [136] T.-L. Wee et al. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type ib diamond. J. Phys. Chem. A, 111, 9379-9386(2007).

    [137] P. Ji et al. Multiple-photon excitation of nitrogen vacancy centers in diamond. Phys. Rev. B, 97, 134112(2018).

    [138] Y.-R. Chang et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol., 3, 284-288(2008).

    [139] C. M. Jimenez et al. Nanodiamond–PMO for two-photon PDT and drug delivery. J. Mater. Chem. B, 4, 5803-5808(2016).

    [140] Y. Y. Hui et al. Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Express, 18, 5896-5905(2010).

    [141] M. Barbiero, S. Castelletto, M. Gu. Multi-focal laser fabrication of nitrogen vacancy centres in a bulk diamond. OSA Continuum, 3, 3416-3423(2020).

    [142] G. E. Johnstone, G. S. Cairns, B. R. Patton. Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. R. Soc. Open Sci., 6, 190589(2019).

    [143] S. Culley et al. SRRF: universal live-cell super-resolution microscopy. Int. J. Biochem. Cell Biol., 101, 74-79(2018).

    [144] N. Gustafsson et al. Fast live-cell conventional fluorophore nanoscopy with imagej through super-resolution radial fluctuations. Nat. Commun., 7, 12471(2016).

    [145] A. W. Schell et al. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics, 3, 091302(2016).

    [146] M. Alkahtani, P. Hemmer. Charge stability of nitrogen-vacancy color centers in organic nanodiamonds. Opt. Mater. Express, 10, 1224-1231(2020).

    [147] N. Aslam et al. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys., 15, 013064(2013).

    [148] P. Siyushev et al. Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys. Rev. Lett., 110, 167402(2013).

    [149] Y. Doi et al. Pure negatively charged state of the NV center in n-type diamond. Phys. Rev. B, 93, 081203(2016).

    [150] E. Bauch et al. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys. Rev. X, 8, 031025(2018).

    [151] S. Li et al. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond. Appl. Phys. Lett., 109, 111107(2016).

    [152] X.-D. Chen et al. Near-infrared-enhanced charge-state conversion for low-power optical nanoscopy with nitrogen-vacancy centers in diamond. Phys. Rev. Appl., 7, 014008(2017).

    [153] D.-F. Li et al. Low power charge state depletion nanoscopy of the defect in diamonds with a pulsed laser excitation. Opt. Lett., 45, 730-733(2020).

    [154] X.-D. Chen et al. Superresolution multifunctional sensing with the nitrogen-vacancy center in diamond. Phys. Rev. Appl., 12, 044039(2019).

    [155] T. Gregory et al. Imaging through noise with quantum illumination. Sci. Adv., 6, eaay2652(2020).

    [156] P.-A. Moreau et al. Imaging with quantum states of light. Nat. Rev. Phys., 3, 367-380(2019).

    [157] S. W. Hell, J. Soukka, P. E. Hänninen. Two- and multiphoton detection as an imaging mode and means of increasing the resolution in far-field light microscopy: a study based on photon-optics. Bioimaging, 3, 64-69(1995).

    [158] P. Hong, G. Zhang. A review of super-resolution imaging through optical high-order interference [invited]. Appl. Sci., 9, 1166(2019).

    [159] H. J. Kimble, M. Dagenais, L. Mandel. Photon antibunching in resonance fluorescence. Phys. Rev. Lett., 39, 691-695(1977).

    [160] O. Schwartz, D. Oron. Improved resolution in fluorescence microscopy using quantum correlations. Phys. Rev. A, 85, 033812(2012).

    [161] T. Dertinger et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci., 106, 22287-22292(2009).

    [162] G. Lubin et al. Quantum correlation measurement with single photon avalanche diode arrays. Opt. Express, 27, 32863-32882(2019).

    [163] Y. Israel et al. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nat. Commun., 8, 14786(2017).

    [164] U. Rossman et al. Rapid quantum image scanning microscopy by joint sparse reconstruction. Optica, 6, 1290-1296(2019).

    [165] C. B. Müller, J. Enderlein. Image scanning microscopy. Phys. Rev. Lett., 104, 198101(2010).

    [166] C. J. Sheppard, S. B. Mehta, R. Heintzmann. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett., 38, 2889-2892(2013).

    [167] A. Classen et al. Superresolution via structured illumination quantum correlation microscopy. Optica, 4, 580-587(2017).

    [168] J. G. Worboys, D. W. Drumm, A. D. Greentree. Quantum multilateration: subdiffraction emitter pair localization via three spatially separate Hanbury Brown and Twiss measurements. Phys. Rev. A, 101, 013810(2020).

    [169] T. Iwasaki et al. Germanium-vacancy single color centers in diamond. Sci. Rep., 5, 12882(2015).

    [170] G. Waldherr et al. Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. Phys. Rev. Lett., 106, 157601(2011).

    [171] X. Hao et al. Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nat. Methods, 18, 688-693(2021).

    [172] C. A. Casacio et al. Quantum-enhanced nonlinear microscopy. Nature, 594, 201-206(2021).

    Stefania Castelletto, Alberto Boretti. Color centers in wide-bandgap semiconductors for subdiffraction imaging: a review[J]. Advanced Photonics, 2021, 3(5): 054001
    Download Citation