• Laser & Optoelectronics Progress
  • Vol. 61, Issue 19, 1900001 (2024)
Jianmiao Zhang1、2, Feng Jin1、*, Xianzi Dong1, and Meiling Zheng1、**
Author Affiliations
  • 1Laboratory of Organic Nanophotonics, Institute of Physical and Chemical Technology, Chinese Academy of Sciences, Beijing 100190, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP232270 Cite this Article Set citation alerts
    Jianmiao Zhang, Feng Jin, Xianzi Dong, Meiling Zheng. China's Top 10 Optical Breakthroughs: Laser Fabrication and Applications of 3D Inorganic Micro and Nanostructures (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1900001 Copy Citation Text show less
    References

    [1] Hua J G, Liang S Y, Chen Q D et al. Free-form micro-optics out of crystals: femtosecond laser 3D sculpturing[J]. Advanced Functional Materials, 32, 2200255(2022).

    [2] Hong Z H, Ye P R, Loy D A et al. High-precision printing of complex glass imaging optics with precondensed liquid silica resin[J]. Advanced Science, 9, 2105595(2022).

    [3] Hu Z, Huang X J, Yang Z W et al. Reversible 3D optical data storage and information encryption in photo-modulated transparent glass medium[J]. Light: Science & Applications, 10, 140(2021).

    [4] Hong M H, Luk’yanchuk B, Huang S M et al. Femtosecond laser application for high capacity optical data storage[J]. Applied Physics A, 79, 791-794(2004).

    [5] Tang H, Di Franco C, Shi Z Y et al. Experimental quantum fast hitting on hexagonal graphs[J]. Nature Photonics, 12, 754-758(2018).

    [6] Li M, Zhang Q, Chen Y et al. Femtosecond laser direct writing of integrated photonic quantum chips for generating path-encoded bell states[J]. Micromachines, 11, 1111(2020).

    [7] Royon M, Jamon D, Blanchet T et al. Sol–gel waveguide-based sensor for structural health monitoring on large surfaces in aerospace domain[J]. Aerospace, 8, 109(2021).

    [8] Xu W L, Lu Z L, Tian G Q et al. Fabrication of single-crystal superalloy hollow blade based on integral ceramic mold[J]. Journal of Materials Processing Technology, 271, 615-622(2019).

    [9] Jipa F, Orobeti S, Butnaru C et al. Picosecond laser processing of photosensitive glass for generation of biologically relevant microenvironments[J]. Applied Sciences, 10, 8947(2020).

    [10] Kotz F, Risch P, Arnold K et al. Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass[J]. Nature Communications, 10, 1439(2019).

    [11] Zhao H W, Liu S J, Wei Y et al. Multiscale engineered artificial tooth enamel[J]. Science, 375, 551-556(2022).

    [12] Guan Q F, Yang H B, Han Z M et al. An all-natural bioinspired structural material for plastic replacement[J]. Nature Communications, 11, 5401(2020).

    [13] Butkutė A, Merkininkaitė G, Jurkšas T et al. Femtosecond laser assisted 3D etching using inorganic-organic etchant[J]. Materials, 15, 2817(2022).

    [14] Hu C, Aubert T, Justo Y et al. The micropatterning of layers of colloidal quantum dots with inorganic ligands using selective wet etching[J]. Nanotechnology, 25, 175302(2014).

    [15] Ros-Tárraga P, Murciano A, Mazón P et al. New 3D stratified Si-Ca-P porous scaffolds obtained by sol-gel and polymer replica method: microstructural, mineralogical and chemical characterization[J]. Ceramics International, 43, 6548-6553(2017).

    [16] Warren S C, Perkins M R, Adams A M et al. A silica sol-gel design strategy for nanostructured metallic materials[J]. Nature Materials, 11, 460-467(2012).

    [17] Zhou Y, Li M Y, Wang Y T et al. Synthesis of sea urchin-like ZnO by a simple soft template method and its photoelectric properties[J]. Materials Science in Semiconductor Processing, 27, 1050-1056(2014).

    [18] Kotz F, Plewa K, Bauer W et al. Liquid glass: a facile soft replication method for structuring glass[J]. Advanced Materials, 28, 4646-4650(2016).

    [19] Niu F R, Yang X L, Li Y B et al. Fused deposition modeling of Si3N4 ceramics: a cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 42, 7369-7376(2022).

    [20] Cunico M W M. Investigation of ceramic dental prostheses based on ZrSiO4-glass composites fabricated by indirect additive manufacturing[J]. International Journal of Bioprinting, 7, 90-99(2021).

    [21] Josten E, Angst M, Glavic A et al. Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals[J]. Nanoscale Horizons, 5, 1065-1072(2020).

    [22] Shimotsuma Y, Tomura K, Okuno T et al. Femtosecond laser-induced self-assembly of Ce3+-doped YAG nanocrystals[J]. Crystals, 10, 1142(2020).

    [23] Nguyen D T, Meyers C, Yee T D et al. 3D-printed transparent glass[J]. Advanced Materials, 29, 1701181(2017).

    [24] Dylla-Spears R, Yee T D, Sasan K et al. 3D printed gradient index glass optics[J]. Science Advances, 6, eabc7429(2020).

    [25] Zhao S Y, Siqueira G, Drdova S et al. Additive manufacturing of silica aerogels[J]. Nature, 584, 387-392(2020).

    [26] He R X, Liu W, Wu Z W et al. Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method[J]. Ceramics International, 44, 3412-3416(2018).

    [27] Yan Y Z, Li L, See T L et al. CO2 laser peeling of Al2O3 ceramic and an application for the polishing of laser cut surfaces[J]. Journal of the European Ceramic Society, 33, 1893-1905(2013).

    [28] Kostyukov A I, Snytnikov V N, Yelisseyev A P et al. Synthesis, structure and optical properties of the laser synthesized Al2O3 nanopowders depending on the crystallite size and vaporization atmosphere[J]. Advanced Powder Technology, 32, 2733-2742(2021).

    [29] Bin F C, Guo M, Li T et al. Carbazole-based anion ionic water-soluble two-photon initiator for achieving 3D hydrogel structures[J]. Advanced Functional Materials, 33, 2300293(2023).

    [30] Guo M, Liu X Y, Li T et al. Cross-scale topography achieved by MOPL with positive photoresist to regulate the cell behavior[J]. Small, 19, 2303572(2023).

    [31] Zhou M X, Jin F, Wang J Y et al. Dynamic color-switching of hydrogel micropillar array under ethanol vapor for optical encryption[J]. Small, 19, 2304384(2023).

    [32] Liu S F, Hou Z W, Lin L H et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding[J]. Science, 377, 1112-1116(2022).

    [33] Bauer J, Crook C, Baldacchini T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass[J]. Science, 380, 960-966(2023).

    [34] Liao C R, Li B Z, Zou M Q et al. Optical fiber integrated micro/nano-structured device fabricated by femtosecond laser induced two-photon polymerization and its applications[J]. Laser & Optoelectronics Progress, 58, 1306005(2021).

    [35] Liao Y, Song J X, Li E et al. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing[J]. Lab on a Chip, 12, 746-749(2012).

    [36] Wang C Y, Gao J, Jiao Z Q et al. Integrated measurement server for measurement-device-independent quantum key distribution network[J]. Optics Express, 27, 5982-5989(2019).

    [37] Yu Y D, Kong K R, Tang R K et al. A bioinspired ultratough composite produced by integration of inorganic ionic oligomers within polymer networks[J]. ACS Nano, 16, 7926-7936(2022).

    [38] Xiao C L, Li M, Wang B J et al. Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films[J]. Nature Communications, 8, 1398(2017).

    [39] Liu C X, Oriekhov T, Fokine M. Investigation of glass bonding and multi-layer deposition during filament-based glass 3D printing[J]. Frontiers in Materials, 9, 978861(2022).

    [40] Liu C X, Oriekhov T, Lee C et al. Rapid fabrication of silica microlens arrays via glass 3D printing[EB/OL]. https://www.liebertpub.com/doi/epub/10.1089/3dp.2022.0112

    [41] Toombs J T, Luitz M, Cook C C et al. Volumetric additive manufacturing of silica glass with microscale computed axial lithography[J]. Science, 376, 308-312(2022).

    [42] Zhao Y Q, Zhu J Z, He W Y et al. 3D printing of unsupported multi-scale and large-span ceramic via near-infrared assisted direct ink writing[J]. Nature Communications, 14, 2381(2023).

    [43] Nordin I H W, Okamoto Y, Okada A et al. Effect of wavelength and pulse duration on laser micro-welding of monocrystalline silicon and glass[J]. Applied Physics A, 122, 400(2016).

    [44] Penilla E H, DeviaCruz L F, Wieg A T et al. Ultrafast laser welding of ceramics[J]. Science, 365, 803-808(2019).

    [45] Li X L, Xu J, Lin Z J et al. Polarization-insensitive space-selective etching in fused silica induced by picosecond laser irradiation[J]. Applied Surface Science, 485, 188-193(2019).

    [46] Li S X, Zhang Z P, Chen D L et al. Study on the micro cavities in the bulk of fused silica produced by picosecond laser-induced microexplosion[J]. Laser & Infrared, 49, 808-812(2019).

    [47] Wlodarczyk K L, Hand D P, Maroto-Valer M M. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser[J]. Scientific Reports, 9, 20215(2019).

    [48] Li X, Zhang T, Ji L F et al. Study on self-forming behavior and mechanism of silicon microholes by picosecond laser scanning[J]. Laser & Optoelectronics Progress, 59, 0114005(2022).

    [49] Wang Z, Nandyala D, Colosqui C E et al. Glass surface micromachining with simultaneous nanomaterial deposition by picosecond laser for wettability control[J]. Applied Surface Science, 546, 149050(2021).

    [50] Nguyen H H, Tieu A K, Wan S H et al. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser[J]. Applied Surface Science, 537, 147808(2021).

    [51] Huang P H, Laakso M, Edinger P et al. Three-dimensional printing of silica glass with sub-micrometer resolution[J]. Nature Communications, 14, 3305(2023).

    [52] Yang J J. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 41, 42-52, 57(2004).

    [53] Yang J J. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 41, 39-47(2004).

    [54] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).

    [55] De Aldana J R V, Romero C, Fernandez J et al. Femtosecond laser direct inscription of 3D photonic devices in Er/Yb-doped oxyfluoride nano-glass ceramics[J]. Optical Materials Express, 10, 2695-2704(2020).

    [56] Liu Z M, Liao Y, Fang Z W et al. Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses[J]. Science China Physics, Mechanics & Astronomy, 61, 070322(2018).

    [57] Sugioka K, Cheng Y. Fabrication of 3D microfluidic structures inside glass by femtosecond laser micromachining[J]. Applied Physics A, 114, 215-221(2014).

    [58] Nasu Y, Kohtoku M, Hibino Y. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Optics Letters, 30, 723-725(2005).

    [59] Hughes M, Yang W, Hewak D. Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass[J]. Applied Physics Letters, 90, 131113(2007).

    [60] Dharmadhikari J A, Dharmadhikari A K, Bhatnagar A et al. Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser[J]. Optics Communications, 284, 630-634(2011).

    [61] Tan Y X, Chu W, Wang P et al. Water-assisted laser drilling of high-aspect-ratio 3D microchannels in glass with spatiotemporally focused femtosecond laser pulses[J]. Optical Materials Express, 9, 1971-1978(2019).

    [62] Qiu J R, Jiang X W, Zhu C S et al. Manipulation of gold nanoparticles inside transparent materials[J]. Angewandte Chemie International Edition, 43, 2230-2234(2004).

    [63] Li Y, Guo H, An R et al. Micro/nano-fabrication of condensed matters by near infrared femtosecond laser pulses[J]. Journal of Infrared and Millimeter Waves, 24, 182-184(2005).

    [64] Tu H H, Yuan T G, Wei Z W et al. Fabrication of 3D computer-generated hologram inside glass by femtosecond laser direct writing[J]. Optical Materials, 135, 113228(2023).

    [65] Sun K, Tan D Z, Fang X Y et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass[J]. Science, 375, 307-310(2022).

    [66] Huang X J, Guo Q Y, Kang S L et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence[J]. ACS Nano, 14, 3150-3158(2020).

    [67] Chen Q P, Huang X J, Yang D D et al. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting[J]. Advanced Optical Materials, 11, 2300090(2023).

    [68] de Castro T, Fares H, Abou Khalil A et al. Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses[J]. Journal of Non-Crystalline Solids, 517, 51-56(2019).

    [69] Jin F, Liu J, Zhao Y Y et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 13, 1357(2022).

    [70] Okhrimchuk A G, Shestakov A V, Khrushchev I et al. Depressed cladding, buried waveguide laser formed in a YAG∶Nd3+ crystal by femtosecond laser writing[J]. Optics Letters, 30, 2248-2250(2005).

    [71] An Q, Ren Y Y, Jia Y C et al. Mid-infrared waveguides in zinc sulfide crystal[J]. Optical Materials Express, 3, 466-471(2013).

    [72] Xiong Y J, Wang S X, Chen Z X et al. Femtosecond laser direct writing of compact Tm∶YLF waveguide lasers[J]. Optics & Laser Technology, 167, 109786(2023).

    [73] Zhang B, Li Z Q, Li L Q et al. Nonlinear waveguides by femtosecond laser writing of lithium triborate crystals[J]. Journal of Optics, 24, 074006(2022).

    [74] Thomas J, Heinrich M, Zeil P et al. Laser direct writing: enabling monolithic and hybrid integrated solutions on the lithium niobate platform[J]. Physica Status Solidi (a), 208, 276-283(2011).

    [75] Bai J, Cheng G H, Long X W et al. Polarization behavior of femtosecond laser written optical waveguides in Ti: Sapphire[J]. Optics Express, 20, 15035-15044(2012).

    [76] Bérubé J P, Lapointe J, Dupont A et al. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire[J]. Optics Letters, 44, 37-40(2018).

    [77] Wei D Z, Wang C W, Wang H J et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).

    [78] Xu X Y, Wang T X, Chen P C et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 609, 496-501(2022).

    [79] Wu D, Zhang Z H, Wang C W et al. Generation of nonlinear Airy beams with switchable acceleration direction[J]. Journal of Optics, 25, 07LT01(2023).

    [80] Zhu B, Liu H G, Liu Y et al. Second-harmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining[J]. Optics Letters, 45, 4132-4135(2020).

    [81] Li F, Liu S F, Liu W Y et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals[J]. Science, 381, 1468-1474(2023).

    [82] Liang S Y, Liu Y F, Ji Z K et al. High-resolution patterning of perovskite quantum dots via femtosecond laser-induced forward transfer[J]. Nano Letters, 23, 3769-3774(2023).

    [83] Castillo-Vega G R, Penilla E H, Camacho-López S et al. Waveguide-like structures written in transparent polycrystalline ceramics with an ultra-low fluence femtosecond laser[J]. Optical Materials Express, 2, 1416-1424(2012).

    [84] Salamu G, Jipa F, Zamfirescu M et al. Cladding waveguides realized in Nd∶YAG ceramic by direct femtosecond-laser writing with a helical movement technique[J]. Optical Materials Express, 4, 790-797(2014).

    [85] Gonzalez-Hernandez D, Varapnickas S, Merkininkaitė G et al. Laser 3D printing of inorganic free-form micro-optics[J]. Photonics, 8, 577(2021).

    [86] Yee D W, Lifson M L, Edwards B W et al. Additive manufacturing of 3D-architected multifunctional metal oxides[J]. Advanced Materials, 31, e1901345(2019).

    [87] Gailevičius D, Padolskytė V, Mikoliūnaitė L et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution[J]. Nanoscale Horizons, 4, 647-651(2019).

    [88] Pham T A, Kim D P, Lim T W et al. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists[J]. Advanced Functional Materials, 16, 1235-1241(2006).

    [89] Passinger S, Saifullah M S M, Reinhardt C et al. Direct 3D patterning of TiO2 using femtosecond laser pulses[J]. Advanced Materials, 19, 1218-1221(2007).

    [90] Park S, Lee D H, Ryoo H I et al. Fabrication of three-dimensional SiC ceramic microstructures with near-zero shrinkage via dual crosslinking induced stereolithography[J]. Chemical Communications, 4880-4882(2009).

    [91] Hong Z H, Ye P R, Loy D A et al. Three-dimensional printing of glass micro-optics[J]. Optica, 8, 904-910(2021).

    [92] Kotz F, Quick A S, Risch P et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Advanced Materials, 33, e2006341(2021).

    [93] Desponds A, Banyasz A, Chateau D et al. 3D printing and pyrolysis of optical ZrO2 nanostructures by two-photon lithography: reduced shrinkage and crystallization mediated by nanoparticles seeds[J]. Small, 17, e2102486(2021).

    [94] Wen X W, Zhang B Y, Wang W P et al. 3D-printed silica with nanoscale resolution[J]. Nature Materials, 20, 1506-1511(2021).

    [95] Sänger J C, Pauw B R, Riechers B et al. Entering a new dimension in powder processing for advanced ceramics shaping[J]. Advanced Materials, 35, 2208653(2023).

    [96] Meza L R, Greer J R. Mechanical characterization of hollow ceramic nanolattices[J]. Journal of Materials Science, 49, 2496-2508(2014).

    [97] Meza L R, Das S, Greer J R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 345, 1322-1326(2014).

    [98] Xia X X, Afshar A, Yang H et al. Electrochemically reconfigurable architected materials[J]. Nature, 573, 205-213(2019).

    [99] Diamantopoulou M, Tancogne-Dejean T, Wheeler J M et al. Double-wall ceramic nanolattices: increased stiffness and recoverability by design[J]. Materials & Design, 208, 109928(2021).

    [100] Liu K L, Ding H B, Li S et al. 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography[J]. Nature Communications, 13, 4563(2022).

    [101] Fang Z W, Haque S, Lin J T et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator[J]. Optics Letters, 44, 1214-1217(2019).

    [102] Flamini F, Magrini L, Rab A S et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining[J]. Light: Science & Applications, 4, e354(2015).

    [103] Zeuner J, Sharma A N, Tillmann M et al. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits[J]. NPJ Quantum Information, 4, 13(2018).

    [104] Marshall G D, Politi A, Matthews J C F et al. Laser written waveguide photonic quantum circuits[J]. Optics Express, 17, 12546-12554(2009).

    [105] Li M, Li C, Li Y. Glass-based integrated quantum photonic chips: from 2D to 3D[J]. Physics, 52, 542-551(2023).

    [106] Tang H, Lin X F, Feng Z et al. Experimental two-dimensional quantum walk on a photonic chip[J]. Science Advances, 4, eaat3174(2018).

    [107] Li M, Li C, Chen Y et al. On-chip path encoded photonic quantum Toffoli gate[J]. Photonics Research, 10, 1533-1542(2022).

    [108] Skryabin N N, Kondratyev I V, Dyakonov I V et al. Two-qubit quantum photonic processor manufactured by femtosecond laser writing[J]. Applied Physics Letters, 122, 121102(2023).

    [109] Glezer E N, Milosavljevic M, Huang L et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 21, 2023-2025(1996).

    [110] Smetanina E O, Chimier B, Petit Y et al. Laser writing of nonlinear optical properties in silver-doped phosphate glass[J]. Optics Letters, 42, 1688-1691(2017).

    [111] Tamaki T, Watanabe W, Nishii J et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics, 44, L687-L689(2005).

    [112] Richter S, Zimmermann F, Eberhardt R et al. Toward laser welding of glasses without optical contacting[J]. Applied Physics A, 121, 1-9(2015).

    [113] Zuo Q Q, Zhang Y, Li P et al. Effect of process parameters on crack characteristics in laser welding of Al2O3 ceramic[J]. Ceramics International, 49, 32440-32447(2023).

    [114] Lee H S, Chung J, Hwang G T et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells[J]. Advanced Functional Materials, 24, 6914-6921(2014).

    [115] Liang J, Shan C, Wang H et al. Highly stable and transparent slippery surface on silica glass fabricated by femtosecond laser[J]. Advanced Engineering Materials, 24, 2200708(2022).

    [116] Liu M N, Wang L, Yu Y H et al. Biomimetic construction of hierarchical structures via laser processing[J]. Optical Materials Express, 7, 2208-2217(2017).

    [117] Papadopoulos A, Skoulas E, Mimidis A et al. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring[J]. Advanced Materials, 31, 1901123(2019).

    [118] Wang H R, Zhang F, Yin K et al. Bioinspired antireflective subwavelength nanostructures induced by femtosecond laser for high transparency glass[J]. Journal of Non-Crystalline Solids, 600, 122016(2023).

    [119] Ding Y L, Liu L P, Wang C et al. Bioinspired near-full transmittance MgF2 window for infrared detection in extremely complex environments[J]. ACS Applied Materials & Interfaces, 15, 30985-30997(2023).

    [120] Li T, Liu J, Guo M et al. Synthesis of biocompatible BSA-GMA and two-photon polymerization of 3D hydrogels with free radical type I photoinitiator[J]. International Journal of Bioprinting, 9, 752(2023).

    [121] Wang J Y, Jin F, Dong X Z et al. Dual-stimuli cooperative responsive hydrogel microactuators via two-photon lithography[J]. Small, 19, 2303166(2023).

    [122] Gao W, Zheng M L, Jin F et al. Fast fabrication of large-area two-dimensional micro/nanostructure by femtosecond laser[J]. Laser & Optoelectronics Progress, 57, 111421(2020).

    [123] Zhou Z Y, Dong X Z, Zheng M L. Evolution and application of digital micromirror device based maskless photolithography[J]. Laser & Optoelectronics Progress, 59, 0922030(2022).

    [124] Guo M, Li T, Zhang W C et al. Wetting of cell aggregates on microdisk topography structures achieved by maskless optical projection lithography[J]. Small, 19, 2300311(2023).

    [125] Saha S K, Wang D, Nguyen V H et al. Scalable submicrometer additive manufacturing[J]. Science, 366, 105-109(2019).

    [126] Liu Y H, Zhao Y Y, Jin F et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Letters, 21, 3915-3921(2021).

    [127] Wang R R, Zheng M L, Zhang W C et al. Micropattern of silver/polyaniline core-shell nanocomposite achieved by maskless optical projection lithography[J]. Nano Letters, 22, 9823-9830(2022).

    Jianmiao Zhang, Feng Jin, Xianzi Dong, Meiling Zheng. China's Top 10 Optical Breakthroughs: Laser Fabrication and Applications of 3D Inorganic Micro and Nanostructures (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1900001
    Download Citation