• Laser & Optoelectronics Progress
  • Vol. 58, Issue 5, 0530002 (2021)
Hongyang Li1、2, Wei Huang1、2, Yuting Zhang1、2, Shan Yin1、2、**, Wentao Zhang1、2、*, and Hao Du1、2
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin , Guangxi 541004, China
  • 2Guangxi Key Laboratory of Optoelectronic Information Processing, Guilin , Guangxi 541004, China
  • show less
    DOI: 10.3788/LOP202158.0530002 Cite this Article Set citation alerts
    Hongyang Li, Wei Huang, Yuting Zhang, Shan Yin, Wentao Zhang, Hao Du. Tunable Electromagnetically Induced Transparency Based on Indium Antimonide Terahertz Metamaterial[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0530002 Copy Citation Text show less
    References

    [1] Sollner T C L G, Goodhue W D, Tannenwald P E et al. Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Applied Physics Letters, 43, 588-590(1983).

    [2] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 1, 97-105(2007).

    [3] Tao H, Landy N I, Bingham C M et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Optics Express, 16, 7181-7188(2008).

    [4] Yin S, Shi X T, Huang W et al. Two-bit terahertz encoder realized by graphene-based metamaterials. Electronics, 8, 1528(2019).

    [5] Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THz beams. Applied Physics Letters, 69, 1026-1028(1996).

    [6] Song H J, Nagatsuma T. Present and future of terahertz communications. IEEE Transactions on Terahertz Science and Technology, 1, 256-263(2011).

    [7] Ferguson B, Zhang X C, Zhang X C. Materials for terahertz science and technology. Nature Materials, 1, 26-33(2002).

    [8] Neu J, Krolla B, Paul O et al. Metamaterial-based gradient index lens with strong focusing in the THz frequency range. Optics Express, 18, 27748-27757(2010).

    [9] Zhu W M, Liu A Q, Zhang W et al. Polarization dependent state to polarization independent state change in THz metamaterials. Applied Physics Letters, 99, 221102(2011).

    [10] Williams C R, Andrews S R, Maier S A et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photonics, 2, 175-179(2008).

    [11] Lee S H, Choi M, Kim T T et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Materials, 11, 936-941(2012).

    [12] Yuan Y H, Chen X Y, Hu F R et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure‍. Chinese Journal of Lasers, 46, 0614016(2019).

    [13] Gao H, Yan F P, Tan S Y et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene. Chinese Journal of Lasers, 44, 0703024(2017).

    [14] Hu B J, Huang M, Li P et al. Multiband plasmon-induced transparency based on silver nanorods and nanodisk hybrid model‍. Acta Physica Sinica, 69, 134202(2020).

    [15] Wang L, Guo X, Zhang Y et al. Enhanced THz EIT resonance based on the coupled electric field dropping effect within the undulated meta-surface. Nanophotonics, 8, 1071-1078(2019).

    [16] Hamam R E, Karalis A, Joannopoulos J D et al. Efficient weakly-radiative wireless energy transfer: an EIT-like approach. Annals of Physics, 324, 1783-1795(2009).

    [17] Zhang C, Wu J, Jin B et al. Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial. Applied Physics Letters, 110, 241105(2017).

    [18] Zhang S, Genov D A, Wang Y et al. Plasmon-induced transparency in metamaterials. Physical Review Letters, 101, 047401(2008).

    [19] Gu J, Singh R, Liu X et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials‍. Nature Communications, 3, 1151(2012).

    [20] Chen M M, Xiao Z Y, Lu X J et al. Dynamically tunable multi-resonance and polarization-insensitive electromagnetically induced transparency-like based on vanadium dioxide film. Optical Materials, 102, 109811(2020).

    [21] He X, Huang Y, Yang X et al. Tunable electromagnetically induced transparency based on terahertz graphene metamaterial. RSC Advances, 7, 40321-40326(2017).

    [22] Zhu J, Han J G, Tian Z et al. Thermal broadband tunable terahertz metamaterials. Optics Communications, 284, 3129-3133(2011).

    [23] Luo H, Cheng Y Z. Thermally tunable terahertz metasurface absorber based on all dielectric indium antimonide resonator structure. Optical Materials, 102, 109801(2020).

    [24] Yang Y, Kravchenko I I, Briggs D P et al. All-dielectric metasurface analogue of electromagnetically induced transparency‍. Nature Communications, 5, 5753(2014).

    [25] Nozhat N. Tunable terahertz plasmon-induced transparency with aperture-side-coupled disk resonators. Optical Engineering, 56, 057101(2017).

    [26] Liu H Q, Ren G B, Gao Y X et al. Tunable subwavelength terahertz plasmon-induced transparency in the InSb slot waveguide side-coupled with two stub resonators. Applied Optics, 54, 3918-3924(2015).

    [27] Li Y, Su Y, Zhai X et al. A novel modulation mechanism in plasmon-induced transparency waveguide. EPL, 125, 34002(2019).

    Hongyang Li, Wei Huang, Yuting Zhang, Shan Yin, Wentao Zhang, Hao Du. Tunable Electromagnetically Induced Transparency Based on Indium Antimonide Terahertz Metamaterial[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0530002
    Download Citation