• Photonics Research
  • Vol. 8, Issue 6, 1035 (2020)
Junting Liu1, Hongkun Nie1, Bingzheng Yan1, Kejian Yang1、2, He Yang3、4, Vladislav Khayrudinov3, Harri Lipsanen3, Baitao Zhang1、2、*, and Jingliang He1、2
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • 3Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076, Finland
  • 4e-mail: yhyanghe@gmail.com
  • show less
    DOI: 10.1364/PRJ.389669 Cite this Article Set citation alerts
    Junting Liu, Hongkun Nie, Bingzheng Yan, Kejian Yang, He Yang, Vladislav Khayrudinov, Harri Lipsanen, Baitao Zhang, Jingliang He. Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber[J]. Photonics Research, 2020, 8(6): 1035 Copy Citation Text show less
    References

    [1] H. Temkin, B. V. Dutt, W. A. Bonner. Photoluminescence study of native defects in InP. Appl. Phys. Lett., 38, 431-433(1981).

    [2] J. D. Dow, R. E. Allen. Surface defects and Fermi-level pinning in InP. J. Vac. Sci. Technol., 20, 659-661(1982).

    [3] M. Alatalo, R. M. Nieminen, M. J. Puska, A. P. Seitsonen, R. Virkkunen. Phosphorus vacancy in InP: a negative-U center. Phys. Rev. B, 47, 6381-6384(1993).

    [4] A. Marceaux, S. Loualiche, O. Dehaese, B. Lambert. High-speed 1.55 μm Fe-doped multiple-quantum-well saturable absorber on InP. Appl. Phys. Lett., 78, 4065-4067(2001).

    [5] Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, D. Van Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 9, 837-842(2015).

    [6] S. Yu, X. B. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, S. Wei, L. Z. Wu, Y. Zhou, G. R. Patzke. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun., 9, 4009(2018).

    [7] H. Pettersson, J. Trägårdh, A. I. Persson, L. Landin, D. Hessman, L. Samuelson. Infrared photodetectors in heterostructure nanowires. Nano Lett., 6, 229-232(2006).

    [8] H. Yang, V. Khayrudinov, V. Dhaka, H. Jiang, A. Autere, H. Lipsanen, Z. Sun, H. Jussila. Nanowire network–based multifunctional all-optical logic gates. Sci. Adv., 4, eaar7954(2018).

    [9] X. Liu, Q. Guo, J. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater., 29, 1605886(2017).

    [10] A. A. Balandin, D. L. Nika. Phononics in low-dimensional materials. Mater. Today, 15, 266-275(2012).

    [11] A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti, S. Roche. Charge transport in disordered graphene-based low dimensional materials. Nano Res., 1, 361-394(2008).

    [12] Q. Tang, Z. Zhou. Graphene-analogous low-dimensional materials. Prog. Mater. Sci., 58, 1244-1315(2013).

    [13] S. A. Dayeh, D. P. Aplin, X. Zhou, P. K. Yu, E. T. Yu, D. Wang. High electron mobility InAs nanowire field-effect transistors. Small, 3, 326-332(2007).

    [14] Y. Huang, X. Duan, C. M. Lieber. Nanowires for integrated multicolor nanophotonics. Small, 1, 142-147(2005).

    [15] R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, K. M. A. Rahman. III-V nanowire photovoltaics: review of design for high efficiency. Phys. Status. Solidi RRL, 7, 815-830(2013).

    [16] B. Lassen, M. Willatzen, R. Melnik, L. C. L. Y. Voon. Electronic structure of free-standing InP and InAs nanowires. J. Mater. Res., 21, 2927-2935(2011).

    [17] Y. Kitauchi, Y. Kobayashi, K. Tomioka, S. Hara, K. Hiruma, T. Fukui, J. Motohisa. Structural transition in indium phosphide nanowires. Nano Lett., 10, 1699-1703(2010).

    [18] R. R. LaPierre, M. Robson, K. M. Azizur-Rahman, P. Kuyanov. A review of III-V nanowire infrared photodetectors and sensors. J. Phys. D, 50, 123001(2017).

    [19] Y. Liang, L. Zhai, X. Zhao, D. Xu. Band-gap engineering of semiconductor nanowires through composition modulation. J. Phys. Chem. B, 109, 7120-7123(2005).

    [20] N. Anttu, A. Abrand, D. Asoli, M. Heurlin, I. Åberg, L. Samuelson, M. Borgström. Absorption of light in InP nanowire arrays. Nano Res., 7, 816-823(2014).

    [21] H. Yu, J. Li, R. A. Loomis, L. W. Wang, W. E. Buhro. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat. Mater., 2, 517-520(2003).

    [22] M. Li, J. C. Li. Size effects on the band-gap of semiconductor compounds. Mater. Lett., 60, 2526-2529(2006).

    [23] M. Mattila, T. Hakkarainen, M. Mulot, H. Lipsanen. Crystal-structure-dependent photoluminescence from InP nanowires. Nanotechnology, 17, 1580-1583(2006).

    [24] C. Jia, Z. Lin, Y. Huang, X. Duan. Nanowire electronics: from nanoscale to macroscale. Chem. Rev., 119, 9074-9135(2019).

    [25] L. N. Quan, J. Kang, C. Z. Ning, P. Yang. Nanowires for photonics. Chem. Rev., 119, 9153-9169(2019).

    [26] J. Deng, Y. Su, D. Liu, P. Yang, B. Liu, C. Liu. Nanowire photoelectrochemistry. Chem. Rev., 119, 9221-9259(2019).

    [27] K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, J. Zou. Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. Nano Lett., 9, 648-654(2009).

    [28] G. L. Tuin, M. T. Borgström, J. Trägårdh, M. Ek, L. R. Wallenberg, L. Samuelson, M. E. Pistol. Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy. Nano Res., 4, 159-163(2010).

    [29] F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish. Nonlinear optical processes in optically trapped InP nanowires. Nano Lett., 11, 4149-4153(2011).

    [30] N. Huang, C. Lin, M. L. Povinelli. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications. J. Opt., 14, 024004(2012).

    [31] S. J. Gibson, B. van Kasteren, B. Tekcan, Y. Cui, D. van Dam, J. E. M. Haverkort, E. Bakkers, M. E. Reimer. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection. Nat. Nanotechnol., 14, 473-479(2019).

    [32] A. J. Lohn, T. Onishi, N. P. Kobayashi. Optical properties of indium phosphide nanowire ensembles at various temperatures. Nanotechnology, 21, 355702(2010).

    [33] M. P. Persson, H. Q. Xu. Electronic structure of [100]-oriented free-standing InAs and InP nanowires with square and rectangular cross sections. Phys. Rev. B, 73, 125346(2006).

    [34] M. Levinson, J. L. Benton, H. Temkin, L. C. Kimerling. Defect states in electron bombarded n-InP. Appl. Phys. Lett., 40, 990-992(1982).

    [35] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [36] Y. Song, Y. Chen, X. Jiang, W. Liang, K. Wang, Z. Liang, Y. Ge, F. Zhang, L. Wu, J. Zheng. Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater., 6, 1701287(2018).

    [37] X. Jiang, S. Liu, W. Liang, S. Luo, Z. He, Y. Ge, H. Wang, R. Cao, F. Zhang, Q. Wen. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev., 12, 1700229(2018).

    [38] F. Zhang, G. Liu, Z. Wang, T. Tang, X. Wang, C. Wang, S. Fu, F. Xing, K. Han, X. Xu. Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale, 11, 17058-17064(2019).

    [39] B. Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited]. Chin. Opt. Lett., 16, 020004(2018).

    [40] J. Liu, V. Khayrudinov, H. Yang, Y. Sun, B. Matveev, M. Remennyi, K. Yang, T. Haggren, H. Lipsanen, F. Wang, B. Zhang, J. He. InAs-nanowire-based broadband ultrafast optical switch. J. Phys. Chem. Lett., 10, 4429-4436(2019).

    CLP Journals

    [1] Hao Ma, Yuanan Zhao, Yuchen Shao, Yafei Lian, Weili Zhang, Guohang Hu, Yuxin Leng, Jianda Shao. Principles to tailor the saturable and reverse saturable absorption of epsilon-near-zero material[J]. Photonics Research, 2021, 9(5): 678

    Junting Liu, Hongkun Nie, Bingzheng Yan, Kejian Yang, He Yang, Vladislav Khayrudinov, Harri Lipsanen, Baitao Zhang, Jingliang He. Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber[J]. Photonics Research, 2020, 8(6): 1035
    Download Citation