• Advanced Photonics
  • Vol. 3, Issue 3, 036001 (2021)
Zhiwei Guo1、2、†,*, Yang Long1、3、*, Haitao Jiang1、2, Jie Ren1、3, and Hong Chen1、2、3
Author Affiliations
  • 1Tongji University, School of Physics Science and Engineering, Shanghai, China
  • 2Tongji University, MOE Key Laboratory of Advanced Micro-Structure Materials, Shanghai, China
  • 3Tongji University, Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Shanghai, China
  • show less
    DOI: 10.1117/1.AP.3.3.036001 Cite this Article Set citation alerts
    Zhiwei Guo, Yang Long, Haitao Jiang, Jie Ren, Hong Chen. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources[J]. Advanced Photonics, 2021, 3(3): 036001 Copy Citation Text show less
    References

    [1] A. Poddubny et al. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [2] P. Shekhar, J. Atkinson, Z. Jacob. Hyperbolic metamaterials: fundamentals and applications. Nano Converg., 1, 14(2014).

    [3] L. Ferrari et al. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, 1-40(2015).

    [4] Z. W. Guo, H. T. Jiang, H. Chen. Hyperbolic metamaterials: from dispersion manipulation to applications. J. Appl. Phys., 127, 071101(2020).

    [5] A. A. High et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [6] Z. W. Guo et al. Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials. Phys. Rev. Appl., 10, 064048(2018).

    [7] X. Lin et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. Proc. Natl. Acad. Sci. U. S. A., 114, 6717-6721(2017).

    [8] J. Jiang, X. Lin, B. L. Zhang. Broadband negative refraction of highly squeezed hyperbolicpolaritons in 2D materials. Research, 2018, 2532819(2018).

    [9] K. Yu et al. Loss-induced topological transition of dispersion in metamaterials. J. Appl. Phys., 119, 203102(2016).

    [10] Z. W. Guo et al. Actively controlling the topological transition of dispersion based on electrically controllable metamaterials. Appl. Sci., 8, 596(2018).

    [11] P. X. Zheng et al. Anomalous wave propagation in topological transition metasurfaces. Adv. Opt. Mater., 7, 1801483(2019).

    [12] Z. W. Guo, H. T. Jiang, H. Chen. Linear-crossing metamaterials mimicked by multilayers with two kinds of single negative materials. J. Phys.: Photonics, 2, 011001(2020).

    [13] L. Shen et al. Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Appl. Phys. Rev., 7, 021403(2020).

    [14] Z. W. Guo, H. T. Jiang, H. Chen. Abnormal wave propagation in tilted linear-crossing metamaterials. Adv. Photonics Res., 2, 021403(2020).

    [15] H. N. Krishnamoorthy et al. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [16] Z. Jacob, I. I. Smolyaninov, E. E. Narimanov. Broadband purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett., 100, 181105(2012).

    [17] Z. W. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [18] I. I. Smolyaninov, Y.-J. Hung, C. C. Davis. Magnifying superlens in the visible frequency range. Science, 315, 1699-1701(2007).

    [19] S.-A. Biehs, V. M. Menon, G. S. Agarwal. Long-range dipole–dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial. Phys. Rev. B, 93, 245439(2016).

    [20] Z. W. Guo et al. Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 26, 627-641(2018).

    [21] W. D. Newman et al. Observation of long-range dipole-dipole interactions in hyperbolic metamaterials. Sci. Adv., 4, eaar5278(2018).

    [22] M. Neugebauer, P. Banzer, S. Nechayev. Emission of circularly polarized light by a linear dipole. Sci. Adv., 5, eaav7588(2019).

    [23] P. V. Kapitanova et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun., 5, 3226(2014).

    [24] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [25] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448-1451(2015).

    [26] V. Mechelen, Z. Jacob. Universal spin-momentum locking of evanescent waves. Optica, 3, 118-126(2016).

    [27] Y. Long, J. Ren, H. Chen. Intrinsic spin of elastic waves. Proc. Natl. Acad. Sci. U. S. A., 115, 9951-9955(2018).

    [28] P. Shi et al. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl. Acad. Sci. U. S. A., 118, e2018816118(2021).

    [29] Z. B. Zhang et al. Controllable transport of nanoparticles along waveguides by spin–orbit coupling of light. Opt. Express, 29, 6282-6292(2021).

    [30] F. Feng et al. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light-Sci. Appl., 9, 95(2021).

    [31] J. S. Eismann et al. Transverse spinning of unpolarized light. Nat. Photonics, 15, 156-161(2021).

    [32] J. Rodríguez-Fortuño et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 340, 328-330(2013).

    [33] Z. W. Guo et al. Photonic spin Hall effect in waveguides composed of two types of single-negative metamaterials. Sci. Rep., 7, 7742(2017).

    [34] F. Picardi et al. Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: an angular spectrum approach. Phys. Rev. B, 95, 245416(2017).

    [35] L. Peng et al. Transverse photon spin of bulk electromagnetic waves in bianisotropic media. Nat. Photonics, 13, 878-882(2019).

    [36] A. Nemilentsau et al. Switchable and unidirectional plasmonic beacons in hyperbolic two-dimensional materials. Phys. Rev. B, 99, 201405(R)(2019).

    [37] F. Q. Yang et al. Actively controlled asymmetric edge states for directional wireless power transfer. Opt. Express, 29, 7844-7857(2021).

    [38] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [39] M. Kerker, D.-S. Wang, C. L. Giles. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am., 73, 765-767(1983).

    [40] C. Pfeiffer, A. Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 110, 197401(2013).

    [41] A. Epstein, J. P. S. Wong, G. V. Eleftheriades. Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat. Commun., 7, 10360(2016).

    [42] X. M. Zhang et al. Dual-band unidirectional emission in a multilayered metal−dielectric nanoantenna. ACS Omega, 2, 774-783(2017).

    [43] M. Decker et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813-820(2015).

    [44] S. Liu et al. Huygens’ metasurfaces enabled by magnetic dipole resonance tuning in split dielectric nanoresonators. Nano Lett., 17, 4297-4303(2017).

    [45] S. Nechayev et al. Huygens’ dipole for polarization-controlled nanoscale light routing. Phys. Rev. A, 99, 041801(R)(2019).

    [46] M. I. Abdelrahman et al. Experimental demonstration of spectrally broadband Huygens sources using low-index spheres. APL Photonics, 4, 020802(2019).

    [47] K. Chen et al. A reconfgurable active huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    [48] F. Picardi, A. V. Zayats, F. J. Rodríguez-Fortuño. Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking. Phys. Rev. Lett., 120, 117402(2018).

    [49] Y. Long et al. Designing all-electric subwavelength metasources for near-field photonic routings. Phys. Rev. Lett., 125, 157401(2020).

    [50] S. J. Zeng et al. Unidirectional excitation of plasmonic waves via a multilayered metal-dielectric-metal Huygens’ nanoantenna. Opt. Lett., 43, 3053-3056(2018).

    [51] X. Lin et al. Chiral plasmons with twisted atomic bilayers. Phys. Rev. Lett., 125, 077401(2020).

    [52] Y. H. Zhong et al. Toggling near-field directionality via polarization control of surface waves. Laser Photonics Rev., 15, 2000388(2021).

    [53] C. Shi et al. Observation of acoustic spin. Natl. Sci. Rev., 6, 707-712(2019).

    [54] Y. Long et al. Symmetry selective directionality in near-field acoustics. Nat. Sci. Rev., 7, 1024-1035(2020).

    [55] M. Wang et al. Magnetic spin–orbit interaction of light. Light-Sci. Appl., 7, 14(2018).

    [56] M. Neugebauer et al. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X, 8, 021042(2018).

    [57] S. S. Kruk et al. Magnetic hyperbolic optical metamaterials. Nat. Commun., 7, 11329(2016).

    [58] Y. H. Yang et al. Magnetic hyperbolic metasurface: concept, design, and applications. Adv. Sci., 5, 1801495(2018).

    [59] J. S. Gomez-Diaz, A. Alù. Flatland optics with hyperbolic metasurfaces. ACS Photonics, 3, 2211-2224(2016).

    [60] Y. Mazor, A. Alù. Nonreciprocal hyperbolic propagation over moving metasurfaces. Phys. Rev. B, 99, 045407(2019).

    [61] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [62] Y. Q. Wang et al. Circuit-based magnetic hyperbolic cavities. Phys. Rev. Appl., 13, 044024(2020).

    [63] Y. Q. Chen et al. Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media. Opt. Express., 28, 17064-17075(2020).

    [64] P. Lodahl et al. Chiral quantum optics. Nature, 541, 473-480(2017).

    [65] S. Nechayev, P. Banzer. Mimicking chiral light-matter interaction. Phys. Rev. B, 99, 241101(R)(2019).

    [66] M. Liu et al. Huygens’ metadevices for parametric waves. Phys. Rev. X, 8, 031077(2018).

    [67] A. Bag et al. Transverse Kerker scattering for angstrom localization of nanoparticles. Phys. Rev. Lett., 121, 193902(2018).

    [68] M. F. Picardi et al. Experimental demonstration of linear and spinning Janus dipoles for polarisation- and wavelength-selective near-field coupling. Light-Sci. Appl., 8, 52(2019).

    [69] J. E. Vázquez-Lozano, A. Martínez, F. J. Rodríguez-Fortuño. Near-field directionality beyond the dipole approximation: electric quadrupole and higher-order multipole angular spectra. Phys. Rev. Appl., 12, 024065(2019).

    [70] X. Piao, S. Yu, N. Park. Design of transverse spinning of light with globally unique handedness. Phys. Rev. Lett., 120, 203901(2018).

    [71] M. Kim et al. Observation of enhanced optical spin Hall effect in a vertical hyperbolic metamaterial. ACS Photonics, 6, 2530-2536(2019).

    [72] G. Zito et al. Observation of spin-polarized directive coupling of light at bound states in the continuum. Optica, 6, 1305-1312(2019).

    [73] Y. Li et al. Topological LC-circuits based on microstrips and observation of electromagnetic modes with orbital angular momentum. Nat. Commun., 9, 4598(2018).

    [74] T. Stauber et al. Unidirectional plasmonic edge modes on general two-dimensional materials. 2D Mater., 6, 045023(2019).

    [75] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [76] W. J. Ji et al. Theory and experimental observation of hyperbolic media based on structural dispersions. Phys. Rev. Mater., 4, 105202(2020).

    [77] J. C. Fu et al. Microwave waveguide-type hyperbolic metamaterials. Adv. Photonics Res., 2, 2000043(2020).

    [78] Y. R. He, S. L. He, X. D. Yang. Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials. Opt. Lett., 37, 2907-2909(2012).

    [79] V. E. Babicheva et al. Finite-width plasmonic waveguides with hyperbolic multilayer cladding. Opt. Express, 23, 9681-9689(2015).

    Zhiwei Guo, Yang Long, Haitao Jiang, Jie Ren, Hong Chen. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources[J]. Advanced Photonics, 2021, 3(3): 036001
    Download Citation