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Abstract. The unidirectional excitation of near-field optical modes is a fundamental prerequisite for many
photonic applications, such as wireless power transfer and information communications. We experimentally
construct all-electric Huygens and spin metasources and demonstrate anomalous unidirectional excitation of
high-k hyperbolic modes in two types of hyperbolic metasurfaces. We use a Huygens metasource to study the
unidirectional excitation of hyperbolic bulk modes in a planar hyperbolic metamaterial (HMM). Specifically,
unidirectional excitation is the same as that in free space in the vertical direction, but opposite to that in free
space in the horizontal direction. This anomalous unidirectional excitation is determined by the anisotropic
HMM dispersion. In addition, we use a spin metasource to observe the anomalous photonic spin Hall effect
in a planar hyperbolic waveguide. For a near-field source with a specific spin, the guide mode with a fixed
directional wave vector is excited due to spin-momentum locking. Because the directions of momentum and
energy flows in the HMM waveguide are opposite, the unidirectional excitation of hyperbolic guided modes is
reversed. Our results not only uncover the sophisticated electromagnetic functionalities of metasources in the
near-field but may also provide novel opportunities for the development of integrated optical devices.
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1 Introduction
Hyperbolic metamaterials (HMMs), an important class of arti-
ficial anisotropic material with hyperbolic isofrequency contours
(IFCs), have recently attracted significant attention due to their
unique ability to control interactions between light and matter.1–4

Tuning the hyperbolic dispersion shape allows light propagation
in HMMs to be flexibly controlled to produce all-angle negative
refraction,5–8 collimation,9,10 beam splitting,11,12 and robust trans-
mission.13,14 Tuning the topological transition of the dispersion
from a closed IFC to an open hyperbolic IFC significantly en-
hances the optical density of states (DOS). This has important
consequences for the strong enhancement of spontaneous

emission.15,16 In addition, HMMs can convert evanescent waves
into propagating waves with largewave vectors. This property has
enabled the demonstration of superresolution imaging that
overcomes the diffraction limit17,18 and long-range dipole–dipole
interactions beyond the near-field coupling limitation.19–21

Interestingly, under near-field excitation, electromagnetic (EM)
waves in HMMs propagate along fixed channels at the sub-
wavelength scale. This is similar to crossing waveguides.22 These
extraordinary guided modes with strong spatial localization
correspond to high-kmodes with large DOSs in HMMs. In 2014,
Kapitanova et al.23 experimentally demonstrated the photonic spin
Hall effect (PSHE) based on spin-orbit coupling of extraordinary
guided modes in HMMs. This optical spin-orbit locking phe-
nomenon comes from the transverse spin property of evanescent
waves.24–31 Unlikewith the PSHE in surface plasmon polaritons at
a metal–dielectric interface,32–34 the directional excitation of spin
dipoles in HMMs occurs inside the bulk of the structure. This
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greatly broadens the near-field coupling control scope.35 Although
the spin dipole can achieve unidirectional excitation based on
spin-orbit coupling, switchable and flexibly controlled unidi-
rectional excitation in HMMs is a highly concerning topic.36

Diversified unidirectional emission may facilitate new wireless
power transfer37 and information communications38 applications.

An alternative way to achieve unidirectional emission is the
Huygens source. As a coherent dipole with orthogonal electrical
and magnetic dipole resonances, a Huygens source can produce
directional radiation in the far field when the Kerker condition
is satisfied.39 Although the Huygens source was originally in-
troduced as a fictitious entity, some effective approaches to
implementing it using polarizable subwavelength particles that
sustain both electric and magnetic dipolar resonances have been
proposed.40 Thus far, the Huygens source has attracted extensive
attention for production of unidirectional far-field antennas.41,42

Based on this far-field property, efficient Huygens metasurfaces
with arbitrary EM wave fronts have recently been proposed for
all-dielectric43–46 and actively controlled systems.47 Specifically,
Picardi et al.48 theoretically revealed the near-field directionality
of a Huygens dipole. The switchable excitation directions of the
Huygens dipole are different from those of spin dipoles because
of obvious differences in symmetry characteristics.49 These re-
markable findings show that the near-field properties of a
Huygens dipole can provide new physical insights into various
unidirectional near-field couplings.48–50

In this paper, we use two-dimensional (2D) transmission lines
(TLs) with lumped elements to design and fabricate circuit-based
HMMs and hyperbolic waveguides. Then, we experimentally
construct all-electric Huygens and spin metasources and dem-
onstrate anomalous unidirectional excitation of high-k hyper-
bolic modes. In particular, we experimentally observe the
anomalous unidirectional excitation of hyperbolic bulk modes in
the horizontal direction using a Huygens metasource. Moreover,
we study the anomalous unidirectional excitation of hyperbolic
guided modes using the spin metasource. Our results not only
clearly show the interesting near-field unidirectional emissions

of the Huygens metasource in HMMs and spin metasources in
hyperbolic waveguides, but also provide a flexible platform for
the construction of more complex composite metasources.
Related designs can be extended to the fields of natural 2D
materials51,52 and acoustics systems.31,53,54

2 Unidirectional Excitation of Hyperbolic
Bulk Modes Using a Huygens Metasource

The unidirectional excitation of magnetic metamaterials for
transverse-electric-polarized (TE-polarized) waves has recently
attracted extensive attention.55–58 In this section, we present
near-field unidirectional excitation of a Huygens metasource in
planar magnetic HMMs,59,60 which may be easy to integrate,
exhibit small losses, and facilitate new applications such as
energy transfer and switching. The emission properties of EM
waves in media depend on their dispersion in wave vector space,
which is characterized by their IFCs. Figure 1 shows examples
of closed ellipsoid and open hyperboloid IFCs. Upon comparing
Fig. 1(a) with Fig. 1(b), it is apparent that the HMM, which has
an open IFC, has a diverging shell volume. This implies that the
ideal HMM can support an infinite optical DOS.15,16 Because of
the special HMM dispersion, the propagation direction of a
wave in an HMM is different from that in a normal anisotropic
material with a closed IFC. Based on the boundary conditions
and the causality law, when a wave with a positive wave vector
(kx > 0, ky > 0, and kz > 0) is incident on a normal material,
the energy flows in all directions are positive [Fig. 1(a)].
However, when a wave with a positive wave vector (kx > 0,
ky > 0, and kz > 0) is incident on an HMM, the energy flow in
the z- (x- or y-) direction is positive (negative), as shown in
Fig. 1(b). We reveal that hyperbolic bulk modes can be used to
achieve anomalous unidirectional excitations during near-field
excitations of an all-electric Huygens metasource.

We calculate radiation patterns for simple point dipoles in air
and HMM (μz ¼ −1.47, μx ¼ μy ¼ 1, and ε ¼ 3.57) using the
finite-element method module of COMSOL Multiphysics. These

Fig. 1 Various 3D IFCs for (a) a closed ellipsoid and (b) an open hyperboloid when the frequency
increases from ω to ωþ δω. The energy flows in the x , y , and z directions are marked using red,
pink, and yellow arrows, respectively.
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are shown in Figs. 2(a) and 2(f), respectively. A comparison of
Figs. 2(a) and 2(f) clearly shows that light propagates along all in-
plane directions in air but only along a certain range of angles in
the HMM. Specifically, the field is much stronger at hyperbolic
asymptotes than elsewhere because of the larger optical DOS.23

Then, we numerically study near-field unidirectional excitation
by all-electric Huygens metasources in air and HMMs, as shown
in Figs. 2(b)–2(e) and Figs. 2(g)–2(j), respectively. The Huygens
metasource is composed of three dipole sources separated by
small spacings (d ≪ λ). These discrete dipoles have the same
intensity but different phases along the horizontal and vertical
directions.49 Since the all-electric Huygens metasource is com-
posed of three electric dipoles arranged successively with phases
of 0 deg, 90 deg, and 180 deg (0 deg, −90 deg, and 180 deg)
along the vertical direction (z direction), the EM waves cause
upward (downward) unidirectional excitation in air, as shown in
Fig. 2(b) [Fig. 2(c)]. The results are similar for the HMMs in
Figs. 2(g) and 2(h). However, anomalous unidirectional excitation
occurs in HMMs when the Huygens metasource is constructed
along the horizontal direction (x direction). The direction of the
leftward (rightward) unidirectional excitation of Huygens meta-
sources at 0 deg, 90 deg, and 180 deg (0 deg, −90 deg, and
180 deg) in air [Figs. 2(d) and 2(e)] changes to rightward (left-
ward) unidirectional excitation in an HMM [Figs. 2(i) and 2(j)].

To understand anomalous unidirectional phenomena in the
HMM, we consider the HMM with μx ¼ μy ¼ μ > 0, μz < 0,

and ε > 0. The dispersion in the xoz 2D plane is k2x
μz
þ k2z

μ ¼ εðωcÞ2,
with the bulk mode as Ey¼A, Ex¼Ez¼0, Hx ¼ −A c

ω
kz
μ ,

Hy¼0, and Hz ¼ A c
ω
kx
μz
, where A is a constant, c is the speed of

light in vacuum, and kx and kz are the x and z components of the
wave vector, respectively. According to the electric field of this
bulk mode, the eigenfunction for the frequency ωk can be written
as uk ¼ ð0,1; 0ÞeiðkxxþkzzÞ, k ¼ ðkx; 0; kzÞ, and the Green func-
tion will be61

Gðr; r0;ωÞ ¼
X

k

c2
u�kðr0;ωkÞukðr;ωkÞ

ω2
k − ω2

: (1)

The Huygens metasource can be composed of three phase-
delayed electric dipoles separated by a distance d. For example,
the horizontally placed Huygens metasource can be expressed
as pðr; tÞ ¼ p0ey½δðxÞ � iδðx − dÞ � iδðx þ dÞ�e−iωt ¼
pðr; ωÞe−iωt. The excited electric field will be Eðr;ωÞ ¼R∞−∞ ω2μ0Gðr0; r;ωÞpðr0;ωÞdr0, and the component after the
Fourier transformation becomes

Eyðkx; ky;ωkÞ ¼
μ0c2ω2

ω2
k − ω2

p0Fk

¼ μ0c2ω2

ω2
k − ω2

p0ð1� ieikxd � ie−ikxdÞ; (2)

where Fk ¼ 1� ieikxd � ie−ikxd is the excitation factor raised
by the source array. One can determine that the time-averaged
Poynting vector for the bulk mode uk is S ¼ 1

2
Re½E� ×H� ¼

cjAj2
2ω ðkxμz ; 0;

kz
μ ÞT. Using the propagation angle θ ¼ arg½Sx þ iSz� ¼

arg½kxμz þ i kzμ � of the excited electric field, we can obtain the re-
lation between the excitation factor Fk and the propagation angle
θ, as shown in Fig. 3. Comparing the relation betweenFk and θ in
air (the orange line in Fig. 3), we can see that the Huygens
metasource placed along the vertical direction excites the HMM
mode with the same directionality as in air [Figs. 3(a) and 3(b)].
However, the horizontally placed metasource produces the op-
posite directionality [Figs. 3(c) and 3(d)]. The main physical
reason behind the anomalous excitation phenomena for the
horizontally placed Huygens metasource is due to the special
HMM dispersion, as shown in Fig. 1(b). The anomalous ex-
citation phenomena appear because of the directional mismatch
between the wave vector k ¼ ðkx; 0; kzÞT and the time-averaged

energy flow S ¼ cjAj2
2ω ðkxμz ; 0;

kz
μ ÞT for the HMM (μz < 0, μ > 0).

Obviously, the extraordinary guide mode present in HMMs
makes them a good research platform for the study of abundant
unidirectional transmission.

Based on 2D TLs with lumped elements in the micro-
wave regime, we construct circuit-based magnetic HMMs and

Fig. 2 (a) Radiation patterns for a simple point dipole in air, where the EM waves can propagate
along all directions. (b)–(e) Unidirectional propagation from the Huygens metasource in air.
(f) Radiation patterns for a simple point dipole in HMM, where the EM waves propagate mainly
along the four channels with high-k modes. Panels (g)–(j) are similar to (b)–(e) but for unidirec-
tional propagation of the Huygens metasources in an HMM.
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experimentally demonstrate anomalous unidirectional trans-
missions from Huygens metasources in HMMs. A schematic
of the effective HMM is shown in Fig. 4(a). Our structure is
constructed on a commercially printed F4B circuit board
(relative permittivity εr ¼ 2.2) with thickness h ¼ 1.6 mm.
The width of the microstrip is w ¼ 2 mm, and the length of a
unit cell is p ¼ 12 mm. In our designed structure, the effective
HMM is produced by loading lumped series capacitors
C ¼ 1 pF in the x direction. Lumped resistors R ¼ 85 Ω are
loaded on the boundary of the sample to provide perfect
matching conditions and avoid reflection from the sample
boundary. The Huygens metasource experimental scheme is
similar to the theoretical design in Fig. 2. Specifically, three
voltage sources are used to construct an all-electric Huygens
metasource in the center of the structure. The external integrated
electric circuits and extra TL systems are exploited to modulate
the phase delays of the constituent dipoles.33,49 These are marked
by the red dots in Fig. 4(b). For clarity, we magnify the lumped
capacitor elements in the inset of Fig. 4(b). The effective circuit
models of the HMM are also shown at the bottom of the inset.
The structural factor of a TL in a circuit-based HMM is defined
as g ¼ Z0∕ηeff , where Z0 and ηeff are the characteristic im-
pedance and effective wave impedance of the TL, re-
spectively.62,63 Especially, when w > h, g ¼ 1∕½1.393þ w∕hþ
ð2∕3Þ lnðw∕hþ 1.444Þ�. The structural factor of our designed
structure is g ≈ 0.3. The metal used to design the microstrip is
copper, and tin is plated on the surface of the metal to avoid
oxidation. Especially, the copper in the microwave regime can
be seen as the perfect electric conductor, and the loss of copper

can be ignored. In fact, for the TL-based effective HMM, the
loss mainly comes from the dielectric loss of the F4B substrate
(the loss tangent is tan δ ¼ 0.0079), and it has been demon-
strated by previous literature that the loss of the dielectric
substrate has little effect on the bulk modes of circuit-based
HMMs.6,14,20 Because the unit size in the TL system is much
smaller than the wavelength, the effective permittivity of a 2D
TL in a quasi-static TE-polarized solution can be written as
(see more details in the Supplementary Material)62,63

ε¼ 2C0 · g∕ε0; μx ¼
L0

g · μ0
;μz ¼

L0

g · μ0
− 1

ω2 ·C ·d · g · μ0
; (3)

where ε0 and μ0 are the permittivity and permeability of the
vacuum, respectively; ω is the angular frequency; and C0 and
L0 denote the capacitance and inductance, respectively, of the
TL per unit length.62,63 In Eq. (1), ε ¼ 3.57 (red dashed line),
μx ¼ 1 (green dot dashed line), and the dependence of μz on the
frequency (solid blue line) are shown in Fig. 4(c). Specifically,
μz ≈ 0 when the frequency is 2.36 GHz (green dotted line).
When the frequency is smaller than this critical value, μz is
negative. The dispersion relation of a circuit-based metamaterial

is described by k2x
ε·μz

þ k2z
ε·μx

¼ ðωcÞ2. We use Eq. (3) to derive the
effective parameters of the TLs and produce the results in
Fig. 4(d). At the reference frequency of 1.5 GHz, μz ¼ −1.47,
μx ¼ 1, and ε ¼ 3.57. Under these parameters, we plot the IFC
of this HMM using the solid blue line in Fig. 4(d). The IFC is a
general hyperbola, in which the two asymptotes are represented

Fig. 3 The jF k j of the Huygens metasources as functions of the propagation direction θ in different
settings. The Huygens metasources are shown in the purple boxes with numbers that indicate the
phase delay (degree unit) of each excitation source. The jF k j functions (normalized by their maxi-
mum values) in the HMM and air are denoted by blue and orange lines, respectively. The dashed
red and black lines indicate the HMM dispersion ωðkx ; kzÞ and the maximum value of jF k j. Here,
d ¼ 0.1λ, where λ is the wavelength in vacuum, and p0 ¼ 1.
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by red dashed lines. Because the DOS is largest along the
directions of the two asymptotes, the energy inside the general
HMM is mainly confined to two pathways determined by the
directions of the asymptotes.23 The dashed blue line indicates
that the IFC calculation frequency is slightly higher than that of
the solid blue line. The green arrows indicate the direction of the
energy flow. In Fig. 4(d), we see that the energy flow direction
in an HMM can be controlled flexibly using the hyperbolic
dispersion. In particular, the energy flow along the z (x) di-
rection is positive (negative). Therefore, hyperbolic bulk modes
in HMMs can be used to achieve unidirectional excitation along
various directions.

Full-wave simulations of the circuit-based system were per-
formed using commercially available software (CSTMicrowave
Studio) that included a finite-element frequency-domain solver.
The HMMs are excited by a simple point source or effective
all-electric Huygens metasources close to the center of the
structure. For comparison, we consider a circuit-based isotropic
medium with a closed IFC (ε ¼ 3.57, μx ¼ 1).20 The EM waves
from a point source can propagate in all in-plane directions
when the frequency is 1.5 GHz, as with the simulated dis-
tribution of an out-of-plane electric field Ey in Fig. 5(a).
Figures 5(b)–5(e) show the unidirectional excitation of a
Huygens metasource in a normal material. We then simulate the
radiation patterns of a point source and four types of Huygens

metasources in circuit-based HMMs at a frequency of 1.5 GHz,
as shown in Figs. 5(f)–5(j). The unidirectional excitation of
hyperbolic bulk modes along the z (x) direction is clearly the
same (opposite) as that in a normal medium. This selective
directional near-field coupling is enabled by the Huygens
metasource composed of all-electric source components with
a symmetry-associated inner freedom and promotes several
symmetry-related near-field excitation behaviors. Especially,
the Huygens metasource is strictly associated with the parity-
time (P̂ T̂ ∶r → −r, t → −t) symmetry and thus will inherit
these symmetry properties naturally.49 In contrast, the spin di-
poles and Janus dipoles are associated with the parity-reversal
(P̂∶r → −r) symmetry and time-reversal (T̂∶t → −t) symmetry,
respectively. The metasources will be able to excite the mode
pairs with the corresponding symmetry features. On the other
hand, the Huygens metasource can be explained in terms of
the time-averaged Poynting vector ∝ Re½E� ×H�, which can
produce fields associated with a net power flow in a given
direction.48 Therefore, in addition to the near-field directionality,
Huygens metasource can also be used to realize the far-field
directionality, which is not possessed by spin and Janus dipoles.
During the experimental process, signals are generated using
a vector network analyzer (Agilent PNA Network Analyzer
N5222A). One monopole source near the center of the sample
is the point source used to excite the circuit-based prototype.

Fig. 4 (a) Schematic of a TL-based HMM structure with p ¼ 12 mm, w ¼ 2 mm, and C ¼ 1 pF.
(b) Prototype of a 2D TL with 21 × 21 unit cells and the related anisotropic 2D-circuit model. The
source is near the center of the sample. The inset shows the amplified lumped capacitors, which
are loaded in the x direction. (c) The effective anisotropic EM parameters are based on the TLs,
where μz ¼ 0 is marked using a green dotted line. (d) The IFC of a circuit-based HMM with
μz ¼ −1.47, μx ¼ 1, and ε ¼ 3.57 at f ¼ 1.5 GHz. The asymptote is represented by purple dashed
lines.
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In addition, three vertical monopole sources at the subwave-
length scale are used to construct the all-electric Huygens
metasource. A small, 2-mm-long homemade rod antenna is
employed to measure the out-of-plane electric field Ey at a fixed
height of 1 mm from the planar microstrip. The sample is placed
on an automatic translation device with a scanning step of 1 mm.
This makes accurately probing the field distribution using a
near-field scanning measurement feasible. The field amplitudes
are normalized according to their respective maximum ampli-
tudes. The experimentally measured results regarding the uni-
directional excitation of hyperbolic bulk modes in Figs. 5(k)–
5(o) match the simulated results in Figs. 5(f)–5(j) well. A
comparison of the radiation patterns in the normal medium and
the HMM shows that anomalous unidirectional excitation of
hyperbolic bulk modes in the horizontal direction can be
achieved using a Huygens metasource.

3 Unidirectional Excitations of Hyperbolic
Guided Modes Using a Spin Metasource

Anomalous unidirectional excitation by an all-electric Huygens
metasource in HMMs provides new ways to control EM waves
within a near-field regime. Recently, special near-field dipoles,
including spin dipoles,64,65 Huygens dipoles,66,67 Janus dipoles,48

and composite spinning dipoles,68,69 have provided a good
platform for studying interesting physical mechanisms such as
transverse-spin-associated globally unique handedness,70 bulk
EM waves,35,71 bound states in continuum,72 and topological
edge states.73,74 In this section, we demonstrate experimentally
that a spin metasource can be used to produce the anomalous
PSHE in a hyperbolic waveguide. Photons with different cir-
cular polarizations (optical spins) may propagate in different
directions. This is referred to as the PSHE.23,33 Optical PSHE
spin-orbit locking has attracted significant research attention
and may be useful for many interesting fields of physics, such

as chiral quantum optics64 and topological photonics75 within the
near-field regime. In addition, the unidirectional excitation of
optical modes is a fundamental prerequisite for numerous photonic
applications, such as polarization beam splitters and directional
radiation antennas. Here, we study abnormal directional excitation
in a circuit-based hyperbolic waveguide. Because of their open-
dispersion IFCs, HMMs support propagation of high-k modes
with large effective refractive indices, thus allowing hyperbolic
waveguides to be miniaturized.76,77 A near-field spin source
couples with only one guided mode in the specific propagation
direction determined by the handedness of the spin source.49

Here, the hyperbolic waveguide is composed of a core layer
of HMM and two cladding layers made of a double positive
(DPS) medium. As in the above section, the circuit-based HMM
is produced using TLs by loading series lumped capacitors in
the x direction. Here, C ¼ 5 pF, w ¼ 2.8 mm, and the other
parameters remain unchanged. In this case, the structure factor
is g ≈ 0.26, and the effective EM parameters of the circuit-based
HMM can be obtained using Eq. (3): μz ¼ ð1 − 1.316Þ×
1018∕f2, μx ¼ 1, and ε ¼ 3.63. In addition, a simple TL system
without elements can produce a DPS medium (εD ¼ 3.63 and
μD ¼ 1), as shown in Fig. 6(a). The corresponding effective
circuit model of the unit structure of the circuit-based DPS
medium is shown in Fig. 6(b). To emphasize the role of the
HMM waveguide, we systematically compare a normal wave-
guide to a hyperbolic waveguide. The normal waveguide is
composed of a DPS-medium core layer and two cladding layers
of negative-μ (MNG) medium [εM ¼ 3.63, μM ¼ ð1 − 1.316Þ×
1018∕f2].33 The circuit-based MNG medium can be easily
constructed using TLs by loading series lumped capacitors in
both the x and z directions, as shown in Fig. 6(c). Analogous to
Fig. 6(b), the effective circuit model of the circuit-based MNG
medium is shown in Fig. 6(d). Based on the boundary con-
ditions, the dispersion relation for the lowest-order guide modes
for TE polarization in HMM78,79 and normal33 waveguides can be

Fig. 5 (a) Simulated point dipole radiation patterns in the circuit-based normal medium. The EM
waves can propagate along all directions. (b)–(e) Unidirectional propagation of the Huygens meta-
sources in a circuit-based normal medium. Panels (f)–(j) correspond, respectively, to (a)–(e) but for
the simulated radiation patterns in the circuit-based HMM. Panels (k)–(o) correspond, respectively,
to (a)–(e) but for the measured radiation patterns in the circuit-based HMM.

Guo et al.: Anomalous unidirectional excitation of high-k hyperbolic modes…

Advanced Photonics 036001-6 May∕Jun 2021 • Vol. 3(3)



obtained (see more details in the Supplementary Material).
Figures 6(e) and 6(f) show the dispersion relations of the circuit-
based hyperbolic waveguide and normal waveguide, respec-
tively, for a core width of dc. The group velocity is calculated
using vg ¼ ∂ω∕∂kx, which provides negative and positive
group velocities for the hyperbolic and normal guided modes,
respectively.

Figure 7(a) shows a schematic illustration of abnormal
PSHE in a hyperbolic waveguide. The simulated electric-field
distributions in Figs. 7(c) and 7(e) show that, for a counter-
clockwise (clockwise) near-field spin metasource, the hyper-
bolic guided mode along the interface runs from left (right) to
right (left). For comparison, we also study directional excitation
in a circuit-based normal waveguide [Fig. 7(b)]. The rightward

(or leftward) unidirectional excitation of a counterclockwise
(or clockwise) spin metasource in the hyperbolic waveguide
changes to leftward (or rightward) unidirectional excitation in
the normal waveguide, as shown in Figs. 7(d) and 7(f).
Therefore, the direction of excitation in the hyperbolic wave-
guide is opposite that of normal PSHE. The guided mode with
the directional wave vector in the PSHE comes from the spin-
momentum locking mechanism. The propagation direction is
determined by wave vector and energy flow parallelism or anti-
parallelism. In a normal waveguide, the direction of directional
transmission is the same as that of the wave vector because the
wave vector and energy flow are in the same direction. However,
in a hyperbolic waveguide, the direction of transmission is re-
versed because the momentum and energy flow are in opposite
directions. The extraordinary guided mode of HMMs makes
them a good research platform for the study of abundant uni-
directional transmission.

To conclude this section, experimental work that demon-
strates anomalous unidirectional excitation of a circuit-based
magnetic hyperbolic waveguide is discussed. Examples of
circuit-based hyperbolic and normal waveguides are shown in
Figs. 8(a) and 8(b), respectively. The core layers are marked by
yellow dotted rectangles, and the all-electric spin metasources
are marked using four dots. For a normal guided mode excited
by a counterclockwise-spin metasource, the waves run along the

Fig. 6 (a), (b) Structure and related anisotropic 2D-circuit model
of the TL-based DPSmedium. Panels (c) and (d) are similar to (a)
and (b) but for MNG media. Here, p ¼ 12 mm, w ¼ 2.8 mm, and
C ¼ 5 pF. (e) Dispersion relations of guided modes in a hyper-
bolic waveguide that is composed of a core HMM layer and two
DPS-medium cladding layers. The structure is shown in the inset.
Panel (f) is similar to (e), but for a normal waveguide, which is
composed of a core layer of DPS medium and two MNG-medium
cladding layers.

Fig. 7 Schematics of (a) anomalous PSHE in an HMM wave-
guide and (b) normal PSHE in a DPS waveguide. A source with
specific handedness excites only a single-guided mode with a
specific propagation direction. Anomalous unidirectional excita-
tion occurs in the HMM waveguide. For a counterclockwise-spin
metasource, only the guided modes that propagate from right to
left and left to right are excited in the (c) HMM and (d) DPS wave-
guides, respectively. However, for a clockwise-spin metasource,
only the guided modes that propagate from left to right and right
to left are excited in the (e) HMM and (f) DPS waveguides, re-
spectively.
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interface from right to left, as shown in Fig. 8(d). However,
unidirectional transmission is reversed for the hyperbolic guided
mode in Fig. 8(c). Similarly, for a normal guided mode excited
by a clockwise spin metasource, the waves run along the in-
terface from left to right in Fig. 8(f), whereas in a hyperbolic
guided mode excited by a clockwise-spin metasource, the waves
run along the interface from right to left in Fig. 8(e). Overall, the
experimental field patterns in Fig. 8 are in good agreement with
the simulated results in Fig. 7. Therefore, anomalous unidi-
rectional excitation of hyperbolic guided modes is observed
experimentally using an all-electric spin metasource.

4 Conclusion
Anomalous unidirectional excitation effects of hyperbolic
modes were observed using near-field all-electric metasources.
For the hyperbolic bulk mode, anomalous unidirectional ex-
citation in the horizontal direction was achieved using a
Huygens metasource. Moreover, using a hyperbolic waveguide,
in which the group velocity and wave vector directions are
opposite, anomalous unidirectional excitation of hyperbolic
guided modes was demonstrated using a spin metasource. Based
on the results from a hyperbolic bulk mode excited by a
Huygens metasource and a hyperbolic guided mode excited by a
spin metasource, we found that the circuit-based HMM is a
good platform for the study of anomalous unidirectional ex-
citation and has potential applications in near-field optical
routing and energy transfer.
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