• Photonics Research
  • Vol. 12, Issue 4, 749 (2024)
Hong Chen1, Ziyao Lyu2, and Changshun Wang1、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2State Key Laboratory of Space-Ground Integrated Information Technology, Beijing Institute of Satellite Information Engineering, Beijing 100095, China
  • show less
    DOI: 10.1364/PRJ.502730 Cite this Article Set citation alerts
    Hong Chen, Ziyao Lyu, Changshun Wang. Tunable polarization holographic gratings obtained by varying the ratio of intensities of the recording beams[J]. Photonics Research, 2024, 12(4): 749 Copy Citation Text show less
    References

    [1] M. Born, E. Wolf. Principles of Optics(1980).

    [2] R. M. A. Azzam, N. M. Bashara. Ellipsometry and Polarized Light(1977).

    [3] Z. Y. Chen, L. S. Yan, P. Yan. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light Sci. Appl., 6, e16207(2017).

    [4] I. Kim, J. Jang, G. Kim. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [5] P. Zijlstra, J. Chon, M. Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 459, 410-413(2009).

    [6] M. G. Xiao, Y. Zheng, S. J. Tan. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun., 5, 5361(2014).

    [7] A. Natansohn, P. Rochon, J. Gosselin. Azo polymers for reversible optical storage. 1. Poly[4’-[[2-(acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene]. Macromolecules, 25, 2268-2273(1992).

    [8] L. L. Nedelchev, A. S. Matharu, S. Hvilsted. Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage. Appl. Opt., 42, 5918-5927(2003).

    [9] T. Banzer, P. Banzer, E. Karimi. Observation of optical polarization Mobius strips. Science, 347, 964-966(2015).

    [10] N. A. Rubin, G. D’Aversa, P. Chevalier. Matrix Fourier optics enables a compact full-stokes polarization camera. Science, 365, eaax1839(2019).

    [11] W. A. Bonner, B. D. Bean. Asymmetric photolysis with elliptically polarized light. Orig. Life Evol. Biosph., 30, 513-517(2000).

    [12] X. Y. Lai, C. L. Wang, Y. J. Chen. Elliptical polarization favors long quantum orbits in high-order above-threshold ionization of noble gases. Phys. Rev. Lett., 110, 043002(2013).

    [13] T. Mullins, E. T. Karamatskos, J. Wiese. Picosecond pulse-shaping for strong three-dimensional field-free alignment of generic asymmetric-top molecules. Nat. Commun., 13, 1431(2022).

    [14] W. Aarts, G. D. Khoe. New endless polarization control method using three fiber squeezers. J. Lightwave. Technol., 7, 1033-1043(1989).

    [15] C. Ru, L. Sun. Study of polarization control model for piezoelectric actuator. Ultrasonics, 44, e731(2006).

    [16] Y. Zhang, C. Yang, S. Li. Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates. Opt. Express, 14, 3484-3490(2006).

    [17] D. Samaniego, G. Zoireff, B. Vidal. Brillouin-induced dynamic arbitrary birefringence. J. Lightwave. Technol., 39, 1961-1967(2020).

    [18] D. Samaniego, B. Vidal. Brillouin wavelength-selective all-optical polarization conversion. Photonics Res., 8, 440-447(2020).

    [19] P. Y. Bony, M. Guasoni, P. Morin. Temporal spying and concealing process in fibre-optic data transmission systems through polarization bypass. Nat. Commun., 5, 4678(2014).

    [20] S. Davtyan, D. Novoa, Y. Chen. Polarization-tailored Raman frequency conversion in chiral gas-filled hollow core photonic crystal fibers. Phys. Rev. Lett., 122, 143902(2019).

    [21] T. Todorov, L. Nikolova, N. Tomova. Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt., 23, 4309-4312(1984).

    [22] L. Nikolova, P. S. Ramanujam. Polarization Holography(2009).

    [23] Z. Lyu, C. Wang. All-optically phase-induced polarization modulation by means of holographic method. Sci. Rep., 10, 5657(2020).

    [24] S. L. Oscurato, M. Salvatore, P. Maddalena. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics, 7, 1387-1422(2018).

    [25] P. Liu, X. Sun, L. Wang. Polarization holographic characteristics of TI/PMMA polymers by linearly polarized exposure. Opt. Mater., 107, 109992(2020).

    [26] Y. Zhai, L. Cao, Y. Liu. A review of polarization-sensitive materials for polarization holography. Materials, 13, 5562(2020).

    [27] S. Zhang, L. Huang, G. Geng. Full-Stokes polarization transformations and time sequence metasurface holographic display. Photonics Res., 10, 1031-1038(2022).

    [28] N. Kawatsuki, H. Matsushita, M. Kondo. Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups. APL Mater., 1, 022103(2013).

    [29] J. L. Zang, G. G. Kang, P. Li. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography. Opt. Lett., 42, 1377-1380(2017).

    [30] S. H. Lin, S. L. Cho, S. F. Chou. Volume polarization holographic recording in thick photopolymer for optical memory. Opt. Express, 22, 14944-14957(2014).

    [31] P. Pagliusi, B. Audia, C. Provenzano. Tunable surface patterning of azopolymer by vectorial holography: the role of photoanisotropies in the driving force. ACS Appl. Mater. Interfaces, 11, 34471-34477(2019).

    [32] L. Nedelchev, G. Mateev, V. Strijkova. Tunable polarization and surface relief holographic gratings in azopolymer nanocomposites with incorporated goethite (α-FeOOH) nanorods. Photonics, 8, 306(2021).

    [33] Z. Lyu, C. Wang, Y. Pan. Polarization modulation by means of tunable polarization gratings in an azobenzene side-chain liquid-crystalline polymer film. Appl. Opt., 57, 3146-3153(2018).

    [34] Z. Lyu, C. Wang, Y. Pan. All-optically controlled beam splitting through asymmetric polarization-based holography. Opt. Lett., 44, 2129-2132(2019).

    [35] M. S. Ho, A. Natansohn, P. Rochon. Azo polymers for reversible optical storage. 7. The effect of the size of the photochromic groups. Macromolecules, 28, 6124-6127(1995).

    [36] F. Ciuchi, A. Mazzulla, G. Carbone. Complex structures of surface relief induced by holographic recording in azo-dye-doped elastomer thin films. Macromolecules, 36, 5689-5693(2003).

    [37] S. W. Cha, D. H. Choi, D. K. Oh. Reversible polarization gratings on thin films of polyoxetanesbearing 4-(N,N-diphenyl)amino-4’-nitroazobenzene chromophores. Adv. Funct. Mater., 12, 670-678(2002).

    [38] G. Mateev, L. Nedelchev, L. Nikolova. Two-dimensional polarization holographic gratings in azopolymer thin films: polarization properties in the presence or absence of surface relief. Photonics, 10, 728(2023).

    Hong Chen, Ziyao Lyu, Changshun Wang. Tunable polarization holographic gratings obtained by varying the ratio of intensities of the recording beams[J]. Photonics Research, 2024, 12(4): 749
    Download Citation