• Advanced Photonics
  • Vol. 5, Issue 6, 066005 (2023)
Shujun Liu1, Ruitao Ma1, Zejie Yu1、2、3, Yaocheng Shi1、2、3、4, and Daoxin Dai1、2、3、4、*
Author Affiliations
  • 1Zhejiang University, College of Optical Science and Engineering, International Research Center for Advanced Photonics, State Key Laboratory for Extreme Photonics and Instrumentation, Hangzhou, China
  • 2Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
  • 3Zhejiang University, Jiaxing Research Institute, Intelligent Optics and Photonics Research Center, Jiaxing, China
  • 4Zhejiang University, Ningbo Research Institute, Ningbo, China
  • show less
    DOI: 10.1117/1.AP.5.6.066005 Cite this Article Set citation alerts
    Shujun Liu, Ruitao Ma, Zejie Yu, Yaocheng Shi, Daoxin Dai. On-chip digitally tunable positive/negative dispersion controller using bidirectional chirped multimode waveguide gratings[J]. Advanced Photonics, 2023, 5(6): 066005 Copy Citation Text show less
    References

    [1] W. Bogaerts et al. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [2] G. H. Smith, D. Novak, Z. Ahmed. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microw. Theory Technol., 45, 1410-1415(1997).

    [3] L. Gruner-Nielsen et al. Dispersion-compensating fibers. J. Lightwave Technol., 23, 3566-3579(2005).

    [4] D. Perez, I. Gasulla, J. Capmany. Toward programmable microwave photonics processors. J. Lightwave Technol., 36, 519-532(2018).

    [5] Y. Jiang et al. A selectable multiband bandpass microwave photonic filter. IEEE Photonics J., 5, 5500509(2013).

    [6] X. Wang et al. Tunable optical delay line based on integrated grating-assisted contradirectional couplers. Photonics Res., 6, 880-886(2018).

    [7] Y. Han et al. Integrated waveguide true time delay beamforming system based on an SOI platform for 28 GHz millimeter-wave communication. Appl. Opt., 59, 7770-7778(2020).

    [8] A. Rashidinejad, Y. Li, A. M. Weiner. Recent advances in programmable photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation. IEEE J. Quantum Electron., 52, 0600117(2016).

    [9] W. Zhang, J. Yao. Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation. J. Lightwave Technol., 34, 4664-4672(2016).

    [10] J. Leuthold, C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [11] M. A. Foster et al. Nonlinear optics in photonic nanowires. Opt. Express, 16, 1300-1320(2008).

    [12] L. Ledezma et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 9, 303-308(2022).

    [13] C. Lafforgue et al. Supercontinuum generation in silicon photonics platforms. Photonics Res., 10, A43-A56(2022).

    [14] Y. Okawachi et al. Active tuning of dispersive waves in Kerr soliton combs. Opt. Lett., 47, 2234-2237(2022).

    [15] J. W. Choi et al. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics, 4, 110804(2019).

    [16] J. Notaros et al. Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express, 25, 21275-21285(2017).

    [17] X. Chen et al. Quantum entanglement on photonic chips: a review. Adv. Photonics, 3, 064002(2021).

    [18] M. Yu et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252-258(2022).

    [19] J. Yao. Photonics to the rescue: a fresh look at microwave photonic filters. IEEE Microw. Mag., 16, 46-60(2015).

    [20] X. Gao et al. Integrated channel-shared optical true time delay line array based on grating-assisted contradirectional couplers for phased array antennas. Proc. SPIE, 11763, 117633W(2021).

    [21] D. Dai, D. Liang, P. Cheben. Next-generation silicon photonics: introduction. Photonics Res., 10, NGSP1-NGSP3(2022).

    [22] H. Sun et al. Broadband 1 × 8 optical beamforming network based on anti-resonant microring delay lines. J. Lightwave Technol., 40, 6919-6928(2022).

    [23] V. Sorianello et al. 100 Gb/s PolMux-NRZ transmission at 1550 nm over 30 km single mode fiber enabled by a silicon photonics optical dispersion compensator, W2A.31(2018).

    [24] A. Waqas, D. Melati, A. Melloni. Cascaded Mach–Zehnder architectures for photonic integrated delay lines. IEEE Photonics Technol. Lett., 30, 1830-1833(2018).

    [25] R. Moreira, S. Gundavarapu, D. J. Blumenthal. Programmable eye-opener lattice filter for multi-channel dispersion compensation using an integrated compact low-loss silicon nitride platform. Opt. Express, 24, 16732-16742(2016).

    [26] I. Giuntoni et al. Continuously tunable delay line based on SOI tapered Bragg gratings. Opt. Express, 20, 11241-11246(2012).

    [27] G. M. Brodnik et al. Extended reach 40 km transmission of C-band real-time 53.125 Gbps PAM-4 enabled with a photonic integrated tunable lattice filter dispersion compensator, 1-3(2018).

    [28] Y. Liu et al. Silicon integrated continuously tunable dispersion compensator based on cascaded micro-ring resonators, 1352-1355(2022).

    [29] I. Giuntoni et al. Integrated dispersion compensator based on apodized SOI Bragg gratings. IEEE Photonics Technol. Lett., 25, 1313-1316(2013).

    [30] D. Liu et al. Four-channel CWDM (de)multiplexers using cascaded multimode waveguide gratings. IEEE Photonics Technol. Lett., 32, 192-195(2020).

    [31] W. Yuan et al. Optical true time delay based on multimode waveguide gratings. Proc. SPIE, 12154, 121540G(2022).

    [32] Y. Sun et al. Large group delay in silicon-on-insulator chirped spiral Bragg grating waveguide. IEEE Photonics J., 13, 5500205(2021).

    [33] Y. Li et al. Large group delay and low loss optical delay line based on chirped waveguide Bragg gratings. Opt. Express, 31, 4630-4638(2023).

    [34] W. Yuan, J. Dong, Y. Yang. High linearity optical delay line based on cascaded multimode waveguide Bragg gratings. Proc. SPIE, 12478, 1247829(2022).

    [35] S. Liu et al. Digitally tunable dispersion controller using chirped multimode waveguide gratings. Optica, 10, 316-323(2023).

    [36] R. Romero, O. Frazão. Linear tunable dispersion compensation device using selective stretching in chirped fiber Bragg grating. Microw. Opt. Technol. Lett., 49, 720-722(2007).

    [37] J. F. Jiang et al. Silicon lateral-apodized add-drop filter for on-chip optical interconnection. Appl. Opt., 56, 8425-8429(2017).

    [38] L. Song, H. Li, D. Dai. Mach–Zehnder silicon-photonic switch with low random phase errors. Opt. Lett., 46, 78-81(2021).

    [39] H. Y. Qiu et al. Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings. Opt. Lett., 42, 3912-3915(2017).

    [40] A. D. White et al. Integrated passive nonlinear optical isolators. Nat. Photonics, 17, 143-149(2022).

    [41] D. X. Dai et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonics Rev., 12, 1700109(2018).

    [42] F. Zhang et al. Integrated optical true time delay network based on grating-assisted contradirectional couplers for phased array antennas. IEEE J. Sel. Top. Quantum Electron., 26, 8302407(2020).

    [43] L. Poladian. Understanding profile-induced group-delay ripple in Bragg gratings. Appl. Opt., 39, 1920-1923(2000).

    [44] G. W. Chern, L. A. Wang. Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings. J. Opt. Soc. Am. A, 16, 2675-2689(1999).

    [45] X. Gao et al. Integrated contra-directionally coupled chirped Bragg grating waveguide with a linear group delay spectrum. Front. Optoelectron., 16, 6(2023).

    [46] Z. Du et al. Silicon nitride chirped spiral Bragg grating with large group delay. APL Photonics, 5, 101302(2020).

    [47] Z. Chen et al. Spiral Bragg grating waveguides for TM mode silicon photonics. Opt. Express, 23, 25295-25307(2015).

    [48] S. Hong et al. Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photonics Res., 10, 1-7(2021).

    [49] Y. Xie et al. Thermally-reconfigurable silicon photonic devices and circuits. IEEE J. Sel. Top. Quantum Electron., 26, 3600220(2020).

    Shujun Liu, Ruitao Ma, Zejie Yu, Yaocheng Shi, Daoxin Dai. On-chip digitally tunable positive/negative dispersion controller using bidirectional chirped multimode waveguide gratings[J]. Advanced Photonics, 2023, 5(6): 066005
    Download Citation