• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230401 (2020)
Min Hu1、2, Xia Xiao1、2、*, Hang Song1、2, and Yu Liu1、2
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP57.230401 Cite this Article Set citation alerts
    Min Hu, Xia Xiao, Hang Song, Yu Liu. Microwave Non-Invasive Blood Glucose Detection Based on Debye Model[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230401 Copy Citation Text show less
    References

    [1] Ding Y, Yao Q K, Deng L J et al. Blood glucose noninvasive measurement based on photoacoustic technique[J]. Laser & Optoelectronics Progress, 55, 030009(2018).

    [2] Sun K, Zhou H, Yang Y K et al. Research advances in blood glucose monitoring system[J]. Chinese Journal of Lasers, 45, 0207011(2018).

    [3] Li F, Zhao Y J, Kong L Q et al. Phantom experimental verification of non-invasive blood glucose measurement based on visible image[J]. Acta Optica Sinica, 40, 0636001(2020).

    [4] ChoiH, LuzioS, BeutlerJ, et al.Microwave noninvasive blood glucose monitoring sensor: human clinical trial results[C]∥2017 IEEE MTT-S International Microwave Symposium (IMS), June 4-9, 2017, Honololu, HI, USA. New York: IEEE Press, 2017: 876- 879.

    [5] Costanzo S, Cioffi V, Raffo A. Analytical model for microwave sensors behavior into biological medium[C]∥2017 IEEE International Conference on Microwaves, November 13-15, 2017, Tel-Aviv, Israel.(2017).

    [6] Xiao X, Li Q W. A noninvasive measurement of blood glucose concentration by UWB microwave spectrum[J]. IEEE Antennas and Wireless Propagation Letters, 16, 1040-1043(2017). http://ieeexplore.ieee.org/document/7593325/

    [7] Li Q W, Xiao X, Kikkawa T. Absorption spectrum for non-invasive blood glucose concentration detection by microwave signals[J]. Journal of Electromagnetic Waves and Applications, 33, 1093-1106(2019). http://www.tandfonline.com/doi/abs/10.1080/09205071.2019.1596168

    [8] Li J Z, Igbe T, Liu Y H et al. An approach for noninvasive blood glucose monitoring based on bioimpedance difference considering blood volume pulsation[J]. IEEE Access, 6, 51119-51129(2018).

    [9] Li J Z, Zeng N, Nie Z D et al. Investigation on dielectric-frequency response characteristics of glucose solution with different concentrations for noninvasive blood glucose monitoring[J]. Journal of Integration Technology, 8, 66-75(2019).

    [10] Costanzo S. Loss tangent effect on the accurate design of microwave sensors for blood glucose monitoring[C]∥2017 11th European Conference on Antennas and Propagation (EUCAP), March 19-24, 2017, Paris, France., 661-663(2017).

    [11] Juan C G, Bronchalo E, Torregrosa G et al. Dielectric characterization of water glucose solutions using a transmission/reflection line method[J]. Biomedical Signal Processing and Control, 31, 139-147(2017).

    [12] Choi H, Naylon J, Luzio S et al. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor[J]. IEEE Transactions on Microwave Theory and Techniques, 63, 3016-3025(2015).

    [13] Karacolak T, Moreland E C, Topsakal E. Cole-cole model for glucose-dependent dielectric properties of blood plasma for continuous glucose monitoring[J]. Microwave and Optical Technology Letters, 55, 1160-1164(2013).

    [14] Bobowski J S, Johnson T. Permittivity measurements of biological samples by an open-ended coaxial line[J]. Progress in Electromagnetics Research B, 40, 159-183(2012).

    [15] Bao J Z, Davis C C, Swicord M L. Microwave dielectric measurements of erythrocyte suspensions[J]. Biophysical Journal, 66, 2173-2180(1994).

    [16] Ellison W J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0--25 THz and the temperature range 0--100 ℃[J]. Journal of Physical and Chemical Reference Data, 36, 1-18(2007).

    [17] Wang L, Xiao X, Kikkawa T. MRI-aided tissues interface characterization: an accurate signal propagation time calculation method for UWB breast tumor imaging[J]. Applied Surface Science, 388, 24-34(2016).

    [18] Takayama Y, Klaus W. Reinterpretation of the auxiliary differential equation method for FDTD[J]. IEEE Microwave and Wireless Components Letters, 12, 102-104(2002).

    [19] Li J, Guo L X, Jiao Y C et al. Composite scattering of a plasma-coated target above dispersive sea surface by the ADE-FDTD method[J]. IEEE Geoscience and Remote Sensing Letters, 10, 4-8(2013).

    [20] Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. literature survey[J]. Physics in Medicine and Biology, 41, 2231-2249(1996).

    [21] Lagarias J C, Reeds J A, Wright M H et al. Convergence properties of the Nelder: mead simplex method in low dimensions[J]. SIAM Journal on Optimization, 9, 112-147(1998).

    [22] Sugitani T, Kubota S, Toya A et al. A compact 4×4 planar UWB antenna array for 3-D breast cancer detection[J]. IEEE Antennas and Wireless Propagation Letters, 12, 733-736(2013).

    [23] Mustafa S, Abbosh A M, Nguyen P T. Modeling human head tissues using fourth-order Debye model in convolution-based three-dimensional finite-difference time-domain[J]. IEEE Transactions on Antennas and Propagation, 62, 1354-1361(2014).

    Min Hu, Xia Xiao, Hang Song, Yu Liu. Microwave Non-Invasive Blood Glucose Detection Based on Debye Model[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230401
    Download Citation