• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 4, 447 (2020)
Xuezong YANG1、2、3、* and Yan FENG1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.04.006 Cite this Article
    YANG Xuezong, FENG Yan. Diamond Raman lasers for sodium guide star[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 447 Copy Citation Text show less
    References

    [1] Kawahara T D, Nozawa S, Saito N, et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Troms, Norway (69.6 N, 19.2 E)[J]. Optics Express, 2017, 25(12): A491-A501.

    [2] Fan T, Yang X, Dong J, et al. Remote magnetometry with mesospheric sodium based on gated photon counting[J]. Journal of Geophysical Research: Space Physics, 2019, 124(9): 7505-7512.

    [3] D’Orgeville C, Bennet F, Blundell M, et al. A sodium laser guide star facility for the ANU/EOS space debris tracking adaptive optics demonstrator[C]. Proceedings of SPIE, 2014, 9148.

    [4] Mata-Calvo R, Calia D B, Barrios R, et al. Laser guide stars for optical free-space communications[C]. Proceedings of SPIE, 2017, 10096.

    [5] Hillman P D, Drummond J D, Denman C A, et al. Simple model, including recoil, for the brightness of sodium guide stars created from CW single frequency fasors and comparison to measurements[C]. Proceedings of SPIE, 2008, 7015.

    [6] HolzlhnerR, Rochester S M, Bonaccini C D, et al. Optimization of cw sodium laser guide star efficiency[J]. Astronomy & Astrophysics, 2010, 510: A20.

    [7] Bass I L, Bonanno R E, Hackel R P, et al. High-average-power dye laser at Lawrence Livermore National Laboratory[J]. Applied Optics, 1992, 31(33): 6993-7006.

    [8] Denman C A, DrummondJ D, Eickhoff M L, et al. Characteristics of sodium guide stars created by the 50-watt FASOR and first closed-loop AO results at the Starfire optical range[C]. Proceedings of SPIE, 2006, 6272: 695916.

    [9] Lu Y, Zhang L, Xu X, et al. 208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode[J]. Optics Express, 2019, 27(15): 20282-20289.

    [10] Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(954): 749-756.

    [11] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8555.

    [12] Yang X, Zhang L, Cui S, et al. Sodium guide star laser pulsed at Larmor frequency[J]. Optics Letters, 2017, 42(21): 4351-4354.

    [13] D’Orgeville C, Fetzer G J. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness[C]. Proceedings of SPIE, 2016, 9909: 99090R.

    [14] Mildren R P. Intrinsic Optical Properties of Diamond[M]. Wiley, 2013.

    [15] Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 2016, 3(8): 876-881.

    [16] Yang X, Kitzler O, Spence D J, et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain[J]. Optics Letters, 2019, 44(4): 839-842.

    [17] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser applications[C]. Proceedings of SPIE, 2010, 7838: 783819.

    [18] Lawandy N, Afzal R. Solid state diamond Raman laser[P]. U.S. Patent, 20050163169 A1, 2004.

    [19] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.

    [20] Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser[J]. Optics Express, 2011, 19(11): 10857-10863.

    [21] Jasbeer H, Williams R J, Kitzler O, et al. Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation[J]. Optics Express, 2018, 26(2): 1930-1941.

    [22] Mildren R P, Butler J E, Rabeau J R. CVD-diamond external cavity Raman laser at 573 nm[J]. Optics Express, 2008, 16(23): 18950-18955.

    [23] Spence D J, Granados E, Mildren R P. Mode-locked picosecond diamond Raman laser[J]. Optics Letters, 2010, 35(4): 556-558.

    [24] Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit[J]. Optics Letters, 2010, 35(23): 3874-3876.

    [25] Sabella A, Piper J A, Mildren R P. Efficient conversion of a 1.064 μm Nd: YAG laser to the eye-safe region using a diamond Raman laser[J]. Optics Express, 2011, 19(23): 23554-23560.

    [26] Jelínek Jr M, Kitzler O, Jelínková H, et al. CVD-diamond external cavity nanosecond Raman laser operating at 1.63 μm pumped by 1.34 μm Nd: YAP laser[J]. Laser Physics Letters, 2012, 9(1): 35-38.

    [27] McKay A, Kitzler O, Liu H, et al. High average power (11 W) eye-safe diamond Raman laser[C]. Proceedings of SPIE, 2012, 8551: 85510U.

    [28] Sabella A, Piper J A, Mildren R P. Mid-infrared diamond Raman laser with tuneable output[C]. Proceedings of SPIE, 2014, 8959: 89590B.

    [29] Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm[J]. Optics Letters, 2014, 39(13): 4037-4040.

    [30] Sabella A. Long Wavelength Extension of Diamond Raman Lasers[D]. Australia: Doctorial Dissertation of Macquarie University, 2017.

    [31] Kaminskii A A, Hemley R J, Lai J, et al. High-order stimulated Raman scattering in CVD single crystal diamond[J]. Laser Physics Letters, 2007, 4(5): 350-353.

    [32] Warrier A M, Lin J, Pask H M, et al. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm[J]. Optics Express, 2014, 22(3): 3325-3333.

    [33] Murtagh M, Lin J, Mildren R P, et al. Efficient diamond Raman laser generating 65 fs pulses[J]. Optics Express, 2015, 23(12): 15504-15513.

    [34] Murtagh M, Lin J, Mildren R P, et al. Ti: sapphire-pumped diamond Raman laser with sub-100-fs pulse duration[J]. Optics Letters, 2014, 39(10): 2975-2978.

    [35] Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters, 2018, 43(3): 563-566.

    [36] Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews, 2015, 9(4): 405-411.

    [37] Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-14.

    [38] Heinzig M, Walbaum T, Williams R J, et al. High-power single-pass pumped diamond Raman laser[C]. Conference on Lasers and Electro-Optics/Europe-European Quantum Electronics Conference, 2017.

    [39] Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2=15 beam[J]. Optics Letters, 2019, 44(10): 2506-2509.

    [40] Heinzig M, Palma-Vega G, Walbaum T, et al. High power 1st and 2nd Stokes diamond Raman frequency conversion[C]. Advanced Solid State Lasers Conference, 2018.

    [41] Kitzler O, Lin J, Pask H M, et al. Single-longitudinal-mode ring diamond Raman laser[J]. Optics Letters, 2017, 42(7): 1229-1232.

    [42] Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser[J]. Optics Letters, 2020, 45(7): 1898-1901.

    [43] Mckay A, Spence D J, Coutts D W, et al. Diamond-based concept for combining beams at very high average powers[J]. Laser & Photonics Reviews, 2017, 11(3): 1600130.

    [44] Reilly S, Savitski V G, Liu H, et al. Monolithic diamond Raman laser[J]. Optics Letters, 2015, 40(6): 930-933.

    [45] Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup[J]. Optical Materials, 1999, 11: 353-371.

    [46] Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation[J]. Optics Letters, 1997, 22(6): 375-377.

    [47] Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression[J]. Journal of the Optical Society of America B: Optical Physics, 2016, 33(7): 1392-1398.

    [48] Jiang M, Zhou P, Xiao H, et al. A high-power narrow-linewidth 1018 nm fiber laser based on a single-mode-few-mode-single-mode structure[J]. High Power Laser Science and Engineering, 2015, 3: e25.

    [49] Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W[J]. Optics Letters, 2017, 42(7): 1193-1196.

    [50] Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 2014, 8(6): 889-895.

    [51] Pedreros B F, Holzlhner R, Rochester S, et al. Frequency chirped continuous-wave sodium laser guide stars: Modeling and optimization[J]. Journal of the Optical Society of America B: Optical Physics, 2020, 37(4): 1208-1218.

    CLP Journals

    [1] LIAO Yangfang, XIE Quan. Effects of annealing temperature and annealing time on structure of Mg2Si films on different substrates[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 644

    YANG Xuezong, FENG Yan. Diamond Raman lasers for sodium guide star[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 447
    Download Citation