[1] Y. Yao et al. Capturing transient events in series: a review of framing photography. Laser Photonics Rev., 18, 2400219(2024).
[2] T. Saiki et al. Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography. Sci. Adv., 9, eadj8608(2023).
[3] M. Sheinman et al. Flatfield ultrafast imaging with single-shot non-synchronous array photography. Opt. Lett., 47, 577(2022).
[4] S. Ek et al. High-speed videography of transparent media using illumination-based multiplexed schlieren. Sci. Rep., 12, 19018(2022).
[5] L. Lazovsky et al. CCD sensor and camera for 100 Mfps burst frame rate image capture. Proc. SPIE, 5787, 184-190(2005).
[6] F. Mochizuki et al. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt. Express, 24, 4155(2016).
[7] X. Liu et al. Single-shot real-time compressed ultrahigh-speed imaging enabled by a snapshot-to-video autoencoder. Photonics Res., 9, 2464(2021).
[8] Y. Lai et al. Tutorial on compressed ultrafast photography. J. Biomed. Opt., 29, S11524(2024).
[9] X. Zeng et al. Review and prospect of single-shot ultrafast optical imaging by active detection. Ultrafast Sci., 3, 0020(2023).
[10] J. Liang, L. V. Wang. Single-shot ultrafast optical imaging. Optica, 5, 1113(2018).
[11] X. Zeng et al. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Adv. Photonics, 2, 056002(2020).
[12] Y. Yao et al. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics, 8, 738(2021).
[13] H.-Y. Huang, C.-S. Guo. Simple system for realizing single-shot ultrafast sequential imaging based on spatial multiplexing in-line holography. Opt. Express, 30, 41613(2022).
[14] S. Yeola, D. Kuk, K.-Y. Kim. Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses. JOSA B, 35, 2822(2018).
[15] L. Yan et al. Multi-frame observation of a single femtosecond laser pulse propagation using an echelon and optical polarigraphy technique. IEEE Photonics Technol. Lett., 25, 1879(2013).
[16] S. Ek, V. Kornienko, E. Kristensson. Long sequence single-exposure videography using spatially modulated illumination. Sci. Rep., 10, 18920(2020).
[17] M. Gragston et al. Single-shot nanosecond-resolution multiframe passive imaging by multiplexed structured image capture. Opt. Express, 26, 28441(2018).
[18]
[19] E. C. Gelderblom et al. Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features. Rev. Sci. Instrum., 83, 103706(2012).
[20] Y. Fang et al. A four-channel ICCD framing camera with nanosecond temporal resolution and high spatial resolution. J. Mod. Opt., 68, 661(2021).
[21] G. D. Fuchs et al. Excited-state spin coherence of a single nitrogen–vacancy centre in diamond. Nat. Phys., 6, 668(2010).
[22] X. Liu et al. Diffraction-gated real-time ultrahigh-speed mapping photography. Optica, 10, 1223(2023).
[23] B. Smith et al. Single chip lidar with discrete beam steering by digital micromirror device. Opt. Express, 25, 14732(2017).
[24] B. Hellman et al. Single-chip holographic beam steering for lidar by a digital micromirror device with angular and spatial hybrid multiplexing. Opt. Express, 28, 21993(2020).
[25] B. Hellman, Y. Takashima. Angular and spatial light modulation by single digital micromirror device for multi-image output and nearly-doubled étendue. Opt. Express, 27, 21477(2019).
[26] D. M. Benton. Multispectral lidar using a two-dimensional dynamic diffraction grating: how to get nanosecond resolution from a projector and a camera. Proc. SPIE, 13200, 58-67(2024).
[27] D. M. Benton. Temporal and spectral dispersion of an optical source using a micromirror array-based streak camera. Opt. Eng., 61, 114108(2022).
[28] J. Liu et al. Coded-aperture broadband light field imaging using digital micromirror devices. Optica, 8, 139(2021).
[29] D. Jin et al. Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography. Opt. Express, 26, 428(2018).
[30] G. S. Settles, M. J. Hargather. A review of recent developments in schlieren and shadowgraph techniques. Meas. Sci. Technol., 28, 042001(2017).
[31] G. S. Settles. Schlieren and Shadowgraph Techniques(2001).
[32] L. M. Weinstein. Large-field high-brightness focusing schlieren system. AIAA Journal, 31, 1250-1255(1993).
[33] DLP4500 .45 WXGA DMD.
[34] T.-H. Chao, H. Zhou, G. F. Reyes. Compact 512 × 512 grayscale optical correlator. Proc. SPIE, 4734, 9-12(2002).
[35] H. Zhou et al. On the development of filter management module for grayscale optical correlator. Proc. SPIE, 5437, 87-94(2004).
[36] T.-H. Chao et al. High-speed optical processing using digital micromirror device. Proc. SPIE, 9094(2014).
[37] C. Gu et al. Digital micromirror device-based ultrafast pulse shaping for femtosecond laser. Opt. Lett., 40, 2870(2015).
[38] M. Miscuglio et al. Massively parallel amplitude-only Fourier neural network. Optica, 7, 1812-1819(2020).
[39] H. Kleine. Filming the invisible–time-resolved visualization of compressible flows. Eur. Phys. J. Spec. Top., 182, 3-34(2010).
[40] H. Kleine et al. Time-resolved visualization of shock–vortex systems emitted from an open shock tube. J. Vis., 13, 33-40(2010).
[41] J. Zheng et al. A high-performance visible framing ICCD camera base on the image intensifier. 2023 24th International Conference on Electronic Packaging Technology (ICEPT), 5(2023).
[42] X. Chen et al. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects. Rev. Sci. Instrum., 84, 063701(2013).
[43] D. M. Benton. Multiple beam steering using dynamic zone plates on a micromirror array. Opt. Eng., 57, 073109(2018).
[44] M. Douglass. DMD reliability: a MEMS success story. Proc. SPIE, 4980(2003).
[45] O. Tzang et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat. Photonics, 13, 788-793(2019).
[46] T. Kim et al. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. Sci. Adv., 6, eaay6200(2020).
[47] R. Geoghegan et al. Methods of monitoring thermal ablation of soft tissue tumors–A comprehensive review. Med. Phys., 49, 769-791(2022).