• Acta Optica Sinica
  • Vol. 31, Issue s1, 100115 (2011)
Wang Haihua1、*, Sun Xianming1, Shen Jin1, Liu Wei1, and Zhang Huayong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201131.s100115 Cite this Article Set citation alerts
    Wang Haihua, Sun Xianming, Shen Jin, Liu Wei, Zhang Huayong. Scattering of Gaussian Beam by a Conducting Spheroidal Particle with Confocal Dielectric Coating[J]. Acta Optica Sinica, 2011, 31(s1): 100115 Copy Citation Text show less
    References

    [1] S. Asano, G. Yamamoto. Light scattering by a spheroid particle[J]. Appl. Opt., 1975, 14(1): 29~49

    [2] S. Asano. Light scattering properties of spheroidal particles[J]. Appl. Opt., 1979, 18(3): 712~723

    [3] A. Sebak, B. Sinha. Scattering by a conducting spheroidal object with dielectric coating at axial incidence[J]. IEEE Trans. Antennas Propag., 1992, 40(3): 268~273

    [4] L. Li, M. Leong, T.-S. Yeo et al.. Electromagnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome[J]. IEEE Trans. Antennas Propag., 2002, 50(11): 1525~1533

    [5] D. Wang. P. Barber. Scattering by inhomogeneous nonspherical objects[J]. Appl. Opt., 1979, 18(8): 1190~1197

    [6] J. Barton. Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination[J]. Appl. Opt., 1995, 34(24): 5542~5551

    [7] J. Barton. Internal, near-surface, and scattered electromagnetic fields for a layered spheroid with arbitrary illumination[J]. Appl. Opt., 2001, 40(21): 3598~3607

    [8] G. Gouesbet, B. Maheu, G. Gréhan. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[J]. J. Opt. Soc. Am. A, 1988, 5(9): 1427~1443

    [9] G. Gouesbet, G. Gréhan, B. Maheu. Computations of the gn coefficients in the generalized Lorenz-Mie theory using three different methods[J]. Appl. Opt., 1988, 27(23): 4874~4883

    [10] G. Gouesbet, G. Gréhan, B. Maheu. Localized interpretation to compute all the coefficients gmn in the generalized Lorenz-Mie theory[J]. J. Opt. Soc. Am. A, 1990, 7(6): 998~1007

    [11] Y. Han, Z. Wu. Scattering of a spheroidal particle illuminated by a Gaussian beam[J]. Appl. Opt., 2001, 40(15): 2501~2509

    [12] Y. Han, G. Gréhan, G. Gouesbet. Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination[J]. Appl. Opt., 2003, 42(33): 6621~6629

    [13] F. Xu, K. Ren, G. Gouesbet et al.. Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid[J]. J. Opt. Soc. Am. A, 2007, 24(1): 119~131

    [14] F. Xu, K. F. Ren, G. Gouesbet et al.. Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam[J]. Phys. Rev. E, 2007, 75(2): 026613

    [15] Y. Han, H. Zhang, G. Han. The expansion coefficients of arbitrarily shaped beam in oblique illumination[J]. Opt. Express, 2007, 15(2): 735~746

    [16] A. Edmonds. Angular momentum in quantum mechanics[M]. Princeton, N. J: Princeton University Press, 1957. Chap.4

    [17] C. Flammer. Spheroidal wave functions[M]. Stanford, California: Stanford University Press, 1957

    [18] L. Davis. Theory of electromagnetic beams[J]. Phys. Rev. A, 1979, 19(3): 1177~1179

    Wang Haihua, Sun Xianming, Shen Jin, Liu Wei, Zhang Huayong. Scattering of Gaussian Beam by a Conducting Spheroidal Particle with Confocal Dielectric Coating[J]. Acta Optica Sinica, 2011, 31(s1): 100115
    Download Citation