• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0112001 (2024)
Qifeng Yu1、2、3、4, Qiang Zhang1、2, Wenjun Chen1、2, Yihe Yin1、2, Mingjie Chen1、2, Yu Lei1、2, Lihao Liu1、2, Xiaolin Liu1、2, Yueqiang Zhang1、2, Biao Hu1、2、*, and Xiaohua Ding5
Author Affiliations
  • 1Shenzhen Key Laboratory of Intelligent Optical Measurement and Detection, Shenzhen University, Shenzhen 518060, Guangdong, China
  • 2College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • 3College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, Hunan, China
  • 4Hunan Provincial Key Laboratory of Image Measurement and Vision Navigation, Changsha 410073, Hunan, China
  • 5Shenzhen Eagle Eye Online Electronic Technology Co., Ltd., Shenzhen 518114, Guangdong, China
  • show less
    DOI: 10.3788/LOP240449 Cite this Article Set citation alerts
    Qifeng Yu, Qiang Zhang, Wenjun Chen, Yihe Yin, Mingjie Chen, Yu Lei, Lihao Liu, Xiaolin Liu, Yueqiang Zhang, Biao Hu, Xiaohua Ding. Videometrics Methods and Applications of Static and Dynamic Deformation of Large-Scale Structures (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0112001 Copy Citation Text show less
    References

    [1] K V S , Roy B K. Online implementation of an adaptive calibration technique for displacement measurement using LVDT[J]. Applied Soft Computing, 53, 19-26(2017).

    [2] Gomez F, Park J W, Spencer B F,. Reference-free structural dynamic displacement estimation method[J]. Structural Control and Health Monitoring, 25, e2209(2018).

    [3] Park J W, Sim S H, Jung H J. Displacement estimation using multimetric data fusion[J]. IEEE/ASME Transactions on Mechatronics, 18, 1675-1682(2013).

    [4] Zhang Q, Fu X, Ren L. Deflection estimation of beam structures based on the measured strain mode shape[J]. Smart Materials and Structures, 30, 105003(2021).

    [5] Sigurdardottir D H, Stearns J, Glisic B. Error in the determination of the deformed shape of prismatic beams using the double integration of curvature[J]. Smart Materials and Structures, 26, 075002(2017).

    [6] Zhang W, Sun L M, Sun S W. Bridge-deflection estimation through inclinometer data considering structural damages[J]. Journal of Bridge Engineering, 22, 04016117(2017).

    [7] Zhou J Y, Sun Z, Wei B et al. Deflection-based multilevel structural condition assessment of long-span prestressed concrete girder bridges using a connected pipe system[J]. Measurement, 169, 108352(2021).

    [8] Bonopera M, Chang K C, Chen C C et al. Fiber Bragg grating–differential settlement measurement system for bridge displacement monitoring: case study[J]. Journal of Bridge Engineering, 24, 05019011(2019).

    [9] Lee Z K, Bonopera M, Hsu C C et al. Long-term deflection monitoring of a box girder bridge with an optical-fiber, liquid-level system[J]. Structures, 44, 904-919(2022).

    [10] Xiong C B, Wang M, Chen W. Data analysis and dynamic characteristic investigation of large-scale civil structures monitored by RTK-GNSS based on a hybrid filtering algorithm[J]. Journal of Civil Structural Health Monitoring, 12, 857-874(2022).

    [11] Nassif H H, Gindy M, Davis J. Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration[J]. NDT & E International, 38, 213-218(2005).

    [12] Reu P L, Rohe D P, Jacobs L D. Comparison of DIC and LDV for practical vibration and modal measurements[J]. Mechanical Systems and Signal Processing, 86, 2-16(2017).

    [13] Zhou J G, Xiao H L, Jiang W W et al. Automatic subway tunnel displacement monitoring using robotic total station[J]. Measurement, 151, 107251(2020).

    [14] Lee J, Kim R E. Noncontact dynamic displacements measurements for structural identification using a multi-channel Lidar[J]. Structural Control and Health Monitoring, 29, e3100(2022).

    [15] Zhang G W, Wu Y L, Zhao W J et al. Radar-based multipoint displacement measurements of a 1200-m-long suspension bridge[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 71-84(2020).

    [16] Rodrigues D V Q, Zuo D L, Li C Z. Wind-induced displacement analysis for a traffic light structure based on a low-cost Doppler radar array[J]. IEEE Transactions on Instrumentation and Measurement, 70, 6503909(1969).

    [17] Yu Q F, Guan B L, Shang Y et al. Flexible camera series network for deformation measurement of large scale structures[J]. Smart Structures and Systems, 24, 587(2019).

    [18] Song Q S, Wu J R, Wang H L et al. Computer vision-based illumination-robust and multi-point simultaneous structural displacement measuring method[J]. Mechanical Systems and Signal Processing, 170, 108822(2022).

    [19] Shang Y, Yu Q F, Yang Z et al. Displacement and deformation measurement for large structures by camera network[J]. Optics and Lasers in Engineering, 54, 247-254(2014).

    [20] Yu Q F, Yin Y H, Zhang Y Q et al. Displacement measurement of large structures using nonoverlapping field of view multi-camera systems under six degrees of freedom ego-motion[J]. Computer-Aided Civil and Infrastructure Engineering, 38, 1483-1503(2023).

    [21] Hu B, Chen W J, Zhang Y Q et al. Vision-based multi-point real-time monitoring of dynamic displacement of large-span cable-stayed bridges[J]. Mechanical Systems and Signal Processing, 204, 110790(2023).

    [22] Yin Y H, Yu Q F, Zhang Y Q et al. Deflection monitoring of immersed tunnel element during floating transportation and installation based on series camera network[J]. Optics and Lasers in Engineering, 172, 107857(2024).

    [23] Wang M M, Xu F Y, Xu Y et al. A robust subpixel refinement technique using self-adaptive edge points matching for vision-based structural displacement measurement[J]. Computer-Aided Civil and Infrastructure Engineering, 38, 562-579(2023).

    [24] Yin Y H, Yu Q F, Hu B et al. A vision monitoring system for multipoint deflection of large-span bridge based on camera networking[J]. Computer-Aided Civil and Infrastructure Engineering, 38, 1879-1891(2023).

    [25] Yu Q, Shang Y[M]. Videometrics: principles and researches(2009).

    [26] Hu S T, Sun H, Wang M C et al. Multi-viewpoint and high-precision measurement method for spatial structure deformation[J]. Laser & Optoelectronics Progress, 59, 1912004(2022).

    [27] Zhou W, Du X Y, Xue X T et al. Stereo vision-based measurement system for geometric parameters of high-speed railway catenary[J]. Acta Optica Sinica, 43, 0512001(2023).

    [28] Zhuang Y Z, Chen W M, Jin T et al. A review of computer vision-based structural deformation monitoring in field environments[J]. Sensors, 22, 3789(2022).

    [29] Peng C, Miao W D, Zeng C. Three-dimensional vibration measurement method for lightweight beam based on machine vision[J]. Journal of Beijing University of Aeronautics and Astronautics, 47, 207-212(2021).

    [30] Yang M, Liu W F, Liu Z H et al. Binocular vision-based method used for determining the static and dynamic parameters of the long-stroke shakers in low-frequency vibration calibration[J]. IEEE Transactions on Industrial Electronics, 70, 8537-8545(2023).

    [31] Shao Y D, Li L, Li J et al. Computer vision based target-free 3D vibration displacement measurement of structures[J]. Engineering Structures, 246, 113040(2021).

    [32] Zuo C L, Ma J, Yue T R et al. Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision[J]. Journal of Experiments in Fluid Mechanics, 34, 87-95(2020).

    [33] Su Z L, Lu L, Yang F J et al. Geometry constrained correlation adjustment for stereo reconstruction in 3D optical deformation measurements[J]. Optics Express, 28, 12219-12232(2020).

    [34] Hu Q J, Feng Z Y, He L P et al. Accuracy improvement of binocular vision measurement system for slope deformation monitoring[J]. Sensors, 20, 1994(2020).

    [35] Lee J, Lee K C, Jeong S et al. Long-term displacement measurement of full-scale bridges using camera ego-motion compensation[J]. Mechanical Systems and Signal Processing, 140, 106651(2020).

    [36] Shao X X, Zhou J F, Yuan F et al. Real-time panoramic-deformation measurement of cabin structure of launch vehicle based on camera network[J]. Scientia Sinica Technologica, 52, 1849-1858(2022).

    [37] Shao X X, Yuan F, Wei K et al. Advances in high-accuracy three-dimensional dynamic deformation measurement and its applications for large structures[J]. Laser & Optoelectronics Progress, 60, 0811013(2023).

    [38] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000).

    [39] Dong C Z, Catbas F N. A non-target structural displacement measurement method using advanced feature matching strategy[J]. Advances in Structural Engineering, 22, 3461-3472(2019).

    [40] Ye X W, Jin T, Ang P P et al. Computer vision-based monitoring of the 3-D structural deformation of an ancient structure induced by shield tunneling construction[J]. Structural Control and Health Monitoring, 28, e2702(2021).

    [41] Feng D M, Feng M Q. Experimental validation of cost-effective vision-based structural health monitoring[J]. Mechanical Systems and Signal Processing, 88, 199-211(2017).

    [42] Song Y Z, Bowen C R, Kim A H et al. Virtual visual sensors and their application in structural health monitoring[J]. Structural Health Monitoring, 13, 251-264(2014).

    [43] Ye X W, Ni Y Q, Wai T T et al. A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification[J]. Smart Structures and Systems, 12, 363-379(2013).

    [44] Dong C Z, Celik O, Catbas F N. Marker-free monitoring of the grandstand structures and modal identification using computer vision methods[J]. Structural Health Monitoring, 18, 1491-1509(2019).

    [45] Xiao Y F, Hu W. High-precision calibration based on multi-camera system[J]. Laser & Optoelectronics Progress, 60, 2015003(2023).

    [46] Lu R S, Li Y F. A global calibration method for large-scale multi-sensor visual measurement systems[J]. Sensors and Actuators A: Physical, 116, 384-393(2004).

    [47] Lu Y K, Liu W, Zhang Y et al. An error analysis and optimization method for combined measurement with binocular vision[J]. Chinese Journal of Aeronautics, 34, 282-292(2021).

    [48] Miyata S, Saito H, Takahashi K et al. Extrinsic camera calibration without visible corresponding points using omnidirectional cameras[J]. IEEE Transactions on Circuits and Systems for Video Technology, 28, 2210-2219(2018).

    [49] Takahashi K, Nobuhara S, Matsuyama T. A new mirror-based extrinsic camera calibration using an orthogonality constraint[C], 1051-1058(2012).

    [50] Zhao Z L, Zhang Z H, Gao N et al. Calibration of multiple cameras based on ChArUco board[J]. Journal of Applied Optics, 42, 848-852(2021).

    [51] Strauß T, Ziegler J, Beck J. Calibrating multiple cameras with non-overlapping views using coded checkerboard targets[C], 2623-2628(2014).

    [52] Ghosal S, Mehrotra R. Orthogonal moment operators for subpixel edge detection[J]. Pattern Recognition, 26, 295-306(1993).

    [53] Sobel I. Neighborhood coding of binary images for fast contour following and general binary array processing[J]. Computer Graphics and Image Processing, 8, 127-135(1978).

    [54] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698(1986).

    [55] Lou Q, Lü J H, Wen L H et al. High-precision camera calibration method based on sub-pixel edge detection[J]. Acta Optica Sinica, 42, 2012002(2022).

    [56] Ballard D H. Generalizing the Hough transform to detect arbitrary shapes[J]. Pattern Recognition, 13, 111-122(1981).

    [57] Li Y S, Shi W, Liu A L. A Harris corner detection algorithm for multispectral images based on the correlation[C], 161-165(2015).

    [58] Bansal M, Kumar M, Kumar M et al. An efficient technique for object recognition using Shi-Tomasi corner detection algorithm[J]. Soft Computing, 25, 4423-4432(2021).

    [59] Križaj J, Štruc V, Pavešić N. Adaptation of SIFT features for robust face recognition[M]. Campilho A, Kamel M. Image analysis and recognition. Lecture notes in computer science, 6111, 394-404(2010).

    [60] You Z, Luan Z, Wei X. Performance analysis of SURF descriptor with different local region partitions[J]. Optics and Precision Engineering, 21, 2395-2403(2013).

    [61] Mohammad S, Morris T. Binary robust independent elementary feature features for texture segmentation[J]. Advanced Science Letters, 23, 5178-5182(2017).

    [62] Yang S Q, Li B, Zeng K. SBRISK: speed-up binary robust invariant scalable keypoints[J]. Journal of Real-Time Image Processing, 12, 583-591(2016).

    [63] Alahi A, Ortiz R, Vandergheynst P. FREAK: fast retina keypoint[C], 510-517(2012).

    [64] Feng D M, Feng M Q. Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection-a review[J]. Engineering Structures, 156, 105-117(2018).

    [65] Pan B, Qian K M, Xie H M et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 20, 062001(2009).

    [66] Li S H, Gao X, Liu Z W et al. Algorithm for sub-pixel detection of fringe image displacement based on gray-level interpolation[J]. Acta Optica Sinica, 41, 1012002(2021).

    [67] Ma S H, Guo P K, You H R et al. An image matching optimization algorithm based on pixel shift clustering RANSAC[J]. Information Sciences, 562, 452-474(2021).

    [68] Trimeche M, Tico M, Gabbouj M. Dense optical flow field estimation using recursive LMS filtering[C](2006).

    [69] Khuc T, Catbas F N. Computer vision-based displacement and vibration monitoring without using physical target on structures[J]. Structure and Infrastructure Engineering, 13, 505-516(2017).

    [70] Hu Q J, He S S, Wang S L et al. A high-speed target-free vision-based sensor for bus rapid transit viaduct vibration measurements using CMT and ORB algorithms[J]. Sensors, 17, 1305(2017).

    [71] Horn B K P, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 17, 185-203(1981).

    [72] Liu B, Zaccarin A. New fast algorithms for the estimation of block motion vectors[J]. IEEE Transactions on Circuits and Systems for Video Technology, 3, 148-157(1993).

    [73] Farnebäck G. Two-frame motion estimation based on polynomial expansion[M]. Bigun J, Gustavsson T. Image analysis. Lecture notes in computer science, 2749, 363-370(2003).

    [74] Collier S, Dare T. Informed pixel pushing: a new method of large-motion handling for phase-based optical flow[J]. Measurement, 213, 112711(2023).

    [75] Zhang Z, Wang J, Zhao H J et al. Applicability of deep learning optical flow estimation for PIV methods[J]. Flow Measurement and Instrumentation, 93, 102398(2023).

    [76] Savian S, Elahi M, Tillo T. Benchmarking the imbalanced behavior of deep learning based optical flow estimators[C], 151-158(2019).

    [77] Ren Z, Yan J C, Ni B B et al. Unsupervised deep learning for optical flow estimation[C], 1495-1501(2017).

    [78] Guo J, Zhu C A. Dynamic displacement measurement of large-scale structures based on the Lucas-Kanade template tracking algorithm[J]. Mechanical Systems and Signal Processing, 66/67, 425-436(2016).

    [79] Dong C Z, Celik O, Catbas F N et al. Structural displacement monitoring using deep learning-based full field optical flow methods[J]. Structure and Infrastructure Engineering, 16, 51-71(2020).

    [80] Hoskere V, Park J W, Yoon H et al. Vision-based modal survey of civil infrastructure using unmanned aerial vehicles[J]. Journal of Structural Engineering, 145, 04019062(2019).

    [81] Feng W W, Zhang S Q, Liu H B et al. Unmanned aerial vehicle-aided stereo camera calibration for outdoor applications[J]. Optical Engineering, 59, 014110(2020).

    [82] Qiu Z C, Wang X F. Vibration measurement and control based on binocular vision[J]. Journal of Vibration, Measurement & Diagnosis, 38, 51-58, 205(2018).

    [83] Long X H, Zhan W W, Gui X L. Research on displacement monitoring method of heavy load bridge structure based on stereo vision[C], 432-437(2020).

    [84] Liu Y, Ge Z D, Yuan Y T et al. Study of the error caused by camera movement for the stereo-vision system[J]. Applied Sciences, 11, 9384(2021).

    [85] Liu Y, Ge Z D, Yuan Y T et al. Wing deformation measurement using the stereo-vision methods in the presence of camera movements[J]. Aerospace Science and Technology, 119, 107161(2021).

    [86] Zhang Y Q, Chen M J, Hu B et al. Transmission mechanism and suppression methods of measurement error based on camera networking[J]. Acta Optica Sinica, 43, 2112002(2023).

    [87] Yu Q F, Jiang G W, Shang Y et al. A displacement-relay videometric method for surface subsidence surveillance in unstable areas[J]. Science China Technological Sciences, 58, 1105-1111(2015).

    [88] Chen W J, Yin Y H, Zhang Y Q et al. Pose correction method for micro-motion stages based on dual-orthogonal-camera[J]. Acta Optica Sinica, 41, 2315001(2021).

    [89] Luo L X, Feng M Q, Wu J P. A comprehensive alleviation technique for optical-turbulence-induced errors in vision-based displacement measurement[J]. Structural Control and Health Monitoring, 27, e2496(2020).

    [90] Luo L X, Feng M Q, Wu J P et al. Modeling and detection of heat haze in computer vision based displacement measurement[J]. Measurement, 182, 109772(2021).

    [91] Feng D M, Feng M Q. Vision-based multipoint displacement measurement for structural health monitoring[J]. Structural Control and Health Monitoring, 23, 876-890(2016).

    [92] Jeong J H, Jo H. Real-time generic target tracking for structural displacement monitoring under environmental uncertainties via deep learning[J]. Structural Control and Health Monitoring, 29, e2902(2022).

    [93] Cai E J, Zhang Y, Lu X Z et al. A target-free video structural motion estimation method based on multi-path optimization[J]. Mechanical Systems and Signal Processing, 198, 110452(2023).

    [94] Lee S, Kim H, Sim S H. Nontarget-based displacement measurement using LiDAR and camera[J]. Automation in Construction, 142, 104493(2022).

    [95] Shao Y D, Li L, Li J et al. Target-free 3D tiny structural vibration measurement based on deep learning and motion magnification[J]. Journal of Sound and Vibration, 538, 117244(2022).

    [96] Yoon H, Shin J, Spencer B F. Structural displacement measurement using an unmanned aerial system[J]. Computer-Aided Civil and Infrastructure Engineering, 33, 183-192(2018).

    [97] Ribeiro D, Santos R, Cabral R et al. Non-contact structural displacement measurement using Unmanned Aerial Vehicles and video-based systems[J]. Mechanical Systems and Signal Processing, 160, 107869(2021).

    [98] Zhuge S, Xu X P, Zhong L J et al. Noncontact deflection measurement for bridge through a multi-UAVs system[J]. Computer-Aided Civil and Infrastructure Engineering, 37, 746-761(2022).

    [99] Xu Y, Zhang J. UAV-based bridge geometric shape measurement using automatic bridge component detection and distributed multi-view reconstruction[J]. Automation in Construction, 140, 104376(2022).

    [100] Yoneyama S, Ueda H. Bridge deflection measurement using digital image correlation with camera movement correction[J]. Materials Transactions, 53, 285-290(2012).

    Qifeng Yu, Qiang Zhang, Wenjun Chen, Yihe Yin, Mingjie Chen, Yu Lei, Lihao Liu, Xiaolin Liu, Yueqiang Zhang, Biao Hu, Xiaohua Ding. Videometrics Methods and Applications of Static and Dynamic Deformation of Large-Scale Structures (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0112001
    Download Citation