• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0300001 (2022)
Jielian Shen1, Ting Ji1、*, Guohui Li1, Linlin Shi1, Lin Feng1, Wenyan Wang1, Dongdong Li2, and Yanxia Cui1、**
Author Affiliations
  • 1College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan , Shanxi 030024, China
  • 2The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • show less
    DOI: 10.3788/LOP202259.0300001 Cite this Article Set citation alerts
    Jielian Shen, Ting Ji, Guohui Li, Linlin Shi, Lin Feng, Wenyan Wang, Dongdong Li, Yanxia Cui. Through-Hole Anodized Aluminum Oxide Template Assisted Fabrication of Patterned Nanostructures and Their Applications in Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0300001 Copy Citation Text show less
    References

    [1] Xie X, Lü W Z, Chen R F et al. Micro/nano structure regulation of donor/acceptor interface for high-performance organic solar cells[J]. Progress in Chemistry, 28, 1591-1600(2016).

    [2] Liu Y S, Liu W, Zhang S Y et al. Applying light trapping structure to GaAs thin film solar cells: a state-of-the-art review[J]. Materials Review, 31, 11-19(2017).

    [3] Wu P P, Fu Y Q, Yang J. Graphene photodetectors based on surface plasmons[J]. Laser & Optoelectronics Progress, 58, 0700002(2021).

    [4] Bi Y G, Yi F S, Feng J. Metallic plasmonic micro/nano-structures for light-field manipulation in organic optoelectronic devices[J]. Laser & Optoelectronics Progress, 56, 202406(2019).

    [5] Yang L, Jiang S L, Sun G B et al. Plasmonic enhanced near-infrared absorption of metal-silicon composite microstructure[J]. Acta Optica Sinica, 40, 2124003(2020).

    [6] Yuan Z H, Xu Y, Cao B et al. Broadband transmission infrared light modulator based on graphene plasma[J]. Laser & Optoelectronics Progress, 57, 232301(2020).

    [7] Zhou H, Yang H F. Research status and prospect of the lithography and micro-nano manufacturing technology[J]. Micronanoelectronic Technology, 49, 613-618, 636(2012).

    [8] Fan M K, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry[J]. Analytica Chimica Acta, 693, 7-25(2011).

    [9] Whitesides G M, Grzybowski B. Self-assembly at all scales[J]. Science, 295, 2418-2421(2002).

    [10] Zhu C, Tian L, Liao J L et al. Fabrication of bioinspired hierarchical functional structures by using honeycomb films as templates[J]. Advanced Functional Materials, 28, 1803194(2018).

    [11] Li X J, Zhang H M, Hu G F et al. Fabrication and application of AAO template[J]. Materials Review, 22, 80-82, 95(2008).

    [12] Liang L L, Zhao Y, Feng C. Fabrication and ultraviolet-visible-near infrared absorption properties of silver nano arrays based on aluminum[J]. Acta Physica Sinica, 69, 065201(2020).

    [13] Lu Y W, Chang S N, Liu Y J et al. Research progress of polymer nano-array thin films based on AAO templates[J]. Materials Reports, 33, 3990-3998, 4007(2019).

    [14] Sun X T, Chen N, Liang H X et al. Progress of fabrication of one-dimensional hybrid nanomaterials by template-confined growth and their diverse applications[J]. Chinese Journal of Applied Chemistry, 37, 123-133(2020).

    [15] Wen L, Wang Z, Mi Y et al. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications[J]. Small, 11, 3408-3428(2015).

    [16] Mijangos C, Hernández R, Martín J. A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates[J]. Progress in Polymer Science, 54/55, 148-182(2016).

    [17] Zhao H P, Liu L, Lei Y. A mini review: functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage[J]. Frontiers of Chemical Science and Engineering, 12, 481-493(2018).

    [18] O’Sullivan J P, Wood G C. The morphology and mechanism of formation of porous anodic films on aluminium[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 317, 511-543(1970).

    [19] Parkhutik V P, Shershulsky V I. Theoretical modelling of porous oxide growth on aluminium[J]. Journal of Physics D: Applied Physics, 25, 1258-1263(1992).

    [20] Zhou Q Y, Niu D M, Feng X J et al. Debunking the effect of water content on anodizing current: evidence against the traditional dissolution theory[J]. Electrochemistry Communications, 119, 106815(2020).

    [21] Zhou Q Y, Tian M M, Ying Z R et al. Dense films formed during Ti anodization in NH4F electrolyte: evidence against the field-assisted dissolution reactions of fluoride ions[J]. Electrochemistry Communications, 111, 106663(2020).

    [22] Xu Y, Thompson G E, Wood G C. Mechanism of anodic film growth on aluminium[J]. Transactions of the IMF, 63, 98-103(1985).

    [23] Zhang Z Y, Wang Q, Xu H Q et al. TiO2 nanotube arrays with a volume expansion factor greater than 2.0: evidence against the field-assisted ejection theory[J]. Electrochemistry Communications, 114, 106717(2020).

    [24] Jessensky O, Müller F, Gösele U. Self-organized formation of hexagonal pore arrays in anodic alumina[J]. Applied Physics Letters, 72, 1173-1175(1998).

    [25] Zhu X F, Song Y, Liu L et al. Electronic currents and the formation of nanopores in porous anodic alumina[J]. Nanotechnology, 20, 475303(2009).

    [26] Li D D, Zhao L, Jiang C H et al. Formation of anodic aluminum oxide with serrated nanochannels[J]. Nano Letters, 10, 2766-2771(2010).

    [27] Li D D, Jiang C H, Jiang J H et al. Self-assembly of periodic serrated nanostructures[J]. Chemistry of Materials, 21, 253-258(2009).

    [28] Gui Q, Xu Z, Zhang H et al. Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation[J]. ACS Applied Materials & Interfaces, 6, 17053-17058(2014).

    [29] Keller F, Hunter M S, Robinson D L. Structural features of oxide coatings on aluminum[J]. Journal of the Electrochemical Society, 100, 411-419(1953).

    [30] Masuda H, Asoh H, Watanabe M et al. Square and triangular nanohole array architectures in anodic alumina[J]. Advanced Materials, 13, 189-192(2001).

    [31] Sulka G D, Brzózka A, Liu L F. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates[J]. Electrochimica Acta, 56, 4972-4979(2011).

    [32] Martín J, Martín-González M, Francisco Fernández J et al. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina[J]. Nature Communications, 5, 5130(2014).

    [33] Lee W, Ji R, Gösele U et al. Fast fabrication of long-range ordered porous alumina membranes by hard anodization[J]. Nature Materials, 5, 741-747(2006).

    [34] Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J]. Science, 268, 1466-1468(1995).

    [35] Masuda H, Yamada H, Satoh M et al. Highly ordered nanochannel-array architecture in anodic alumina[J]. Applied Physics Letters, 71, 2770-2772(1997).

    [36] Zhang C, Li W C, Yu D L et al. Wafer-scale highly ordered anodic aluminum oxide by soft nanoimprinting lithography for optoelectronics light management[J]. Advanced Materials Interfaces, 4, 1601116(2017).

    [37] Al-Haddad A, Zhan Z B, Wang C L et al. Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning[J]. ACS Nano, 9, 8584-8591(2015).

    [38] Han C Y, Willing G A, Xiao Z L et al. Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching[J]. Langmuir, 23, 1564-1568(2007).

    [39] Hu D, Bai A Q, Cheng B W et al. Fabrication of ultra-thin porous anodic alumina films[J]. Microfabrication Technology, 12-15(2008).

    [40] Zhan Z B, Xu R, Mi Y et al. Highly controllable surface plasmon resonance property by heights of ordered nanoparticle arrays fabricated via a nonlithographic route[J]. ACS Nano, 9, 4583-4590(2015).

    [41] Chang X H, Wang Y F, Zhang X F et al. Iridium size effects in localized surface plasmon-enhanced diamond UV photodetectors[J]. Applied Surface Science, 487, 674-677(2019).

    [42] Jung M, Kim J H, Choi Y W. Preparation of anodic aluminum oxide masks with size-controlled pores for 2D plasmonic nanodot arrays[J]. Journal of Nanomaterials, 2018, 1-9(2018).

    [43] Tian G, Zhang F, Yao J et al. Magnetoelectric coupling in well-ordered epitaxial BiFeO3/CoFe2O4/SrRuO3 heterostructured nanodot array[J]. ACS Nano, 10, 1025-1032(2016).

    [44] Lei Y, Chim W K. Shape and size control of regularly arrayed nanodots fabricated using ultrathin alumina masks[J]. Chemistry of Materials, 17, 580-585(2005).

    [45] Lei Y, Chim W K, Weissmüller J et al. Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates[J]. Nanotechnology, 16, 1892-1898(2005).

    [46] Mi Y, Wen L Y, Xu R et al. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting[J]. Advanced Energy Materials, 6, 1501496(2016).

    [47] Zhou J B, Fang Y. Preparation of silver quantum dots with AAO template[J]. The Journal of Light Scattering, 18, 173-176(2006).

    [48] Hsu W L, Cheng C H, Wu C L et al. Nano-porous MOSLEDs with spatially confined Si quantum dots buried in anodic aluminum oxide membrane[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-7(2017).

    [49] Li M Y, Shen K, Xu H et al. Enhanced spatial light confinement of all inorganic perovskite photodetectors based on hybrid plasmonic nanostructures[J]. Small, 16, 2004234(2020).

    [50] Cottom J W, Abellan P, Ramasse Q M et al. Systematic analysis of the coupling effects within supported plasmonic nanorod antenna arrays[J]. The Journal of Physical Chemistry C, 122, 22041-22053(2018).

    [51] Shojaie Mehr S, Ramezani A, Almasi Kashi M et al. Probing the interplay between reversibility and magnetostatic interactions within arrays of multisegmented nanowires[J]. Journal of Materials Science, 53, 14629-14644(2018).

    [52] Huo X L, Yang H, Li M X et al. Multi-segmented CdS-Au nanorods for electrochemiluminescence bioanalysis[J]. Nanoscale, 10, 19224-19230(2018).

    [53] Li Z Y, Gao F, Gu Z Y. Vertically aligned Pt nanowire array/Au nanoparticle hybrid structure as highly sensitive amperometric biosensors[J]. Sensors and Actuators B: Chemical, 243, 1092-1101(2017).

    [54] Su Z X, Sha J, Pan G W et al. Temperature-dependent Raman scattering of silicon nanowires[J]. The Journal of Physical Chemistry B, 110, 1229-1234(2006).

    [55] Kim W H, Park S J, Son J Y et al. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition[J]. Nanotechnology, 19, 045302(2008).

    [56] Yang C J, Wang S M, Liang S W et al. Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition[J]. Applied Physics Letters, 90, 033104(2007).

    [57] Hu Y H, Gu M, Liu X L et al. Sol-gel template synthesis and characterization of Lu₂O₃∶Eu3+ nanowire arrays[J]. Micromachines, 9, E601(2018).

    [58] Jeng K S, Chu C W, Liu C L et al. Orientation preferences of interchain stackings for poly(3-hexylthiophene) nanowires prepared using template-based wetting methods[J]. Macromolecular Chemistry and Physics, 219, 1800078(2018).

    [59] Liu F, Lee J Y, Zhou W J. Multisegment PtRu nanorods: electrocatalysts with adjustable bimetallic pair sites[J]. Advanced Functional Materials, 15, 1459-1464(2005).

    [60] Ashley M J, Kluender E J, Mirkin C A. Fast charge extraction in perovskite-based core-shell nanowires[J]. ACS Nano, 12, 7206-7212(2018).

    [61] Yao L H, Zhang J P, Dai H W et al. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure[J]. Nanoscale, 10, 12695-12703(2018).

    [62] Dickey M D, Weiss E A, Smythe E J et al. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation[J]. ACS Nano, 2, 800-808(2008).

    [63] Fu J, Cherevko S, Chung C H. Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate[J]. Electrochemistry Communications, 10, 514-518(2008).

    [64] Zhang A Q, Zhou J J, Das P et al. Revisiting metal electrodeposition in porous anodic alumina: toward tailored preparation of metal nanotube arrays[J]. Journal of the Electrochemical Society, 165, D129-D134(2018).

    [65] Zhang X L, Zhang H M, Wu T S et al. Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes[J]. Journal of Magnetism and Magnetic Materials, 331, 162-167(2013).

    [66] Yu D Q, Li S Q, Qi W H et al. Temperature-dependent Raman spectra and thermal conductivity of multi-walled MoS2 nanotubes[J]. Applied Physics Letters, 111, 123102(2017).

    [67] Hsu M C, Leu I C, Sun Y M et al. Fabrication of CdS@TiO2 coaxial composite nanocables arrays by liquid-phase deposition[J]. Journal of Crystal Growth, 285, 642-648(2005).

    [68] Grote F, Kühnel R S, Balducci A et al. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors[J]. Applied Physics Letters, 104, 053904(2014).

    [69] Foong T R B, Shen Y D, Hu X et al. Template-directed liquid ALD growth of TiO2 nanotube arrays: properties and potential in photovoltaic devices[J]. Advanced Functional Materials, 20, 1390-1396(2010).

    [70] Kyotani T, Tsai L F, Tomita A. Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template[J]. Chemistry of Materials, 7, 1427-1428(1995).

    [71] Che G L, Lakshmi B B, Fisher E R et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 393, 346-349(1998).

    [72] Hwang S K, Lee J, Jeong S H et al. Fabrication of carbon nanotube emitters in an anodic aluminium oxide nanotemplate on a Si wafer by multi-step anodization[J]. Nanotechnology, 16, 850-858(2005).

    [73] Li J, Papadopoulos C, Xu J M et al. Highly-ordered carbon nanotube arrays for electronics applications[J]. Applied Physics Letters, 75, 367-369(1999).

    [74] Kawamura G, Ohara K, Tan W K et al. Sol-gel template synthesis of BaTiO3 films with nano-periodic structures[J]. Materials Letters, 227, 120-123(2018).

    [75] Grote F, Zhao H P, Lei Y. Self-supported carbon coated TiN nanotube arrays: innovative carbon coating leads to an improved cycling ability for supercapacitor applications[J]. Journal of Materials Chemistry A, 3, 3465-3470(2015).

    [76] Chang W T, Hsueh Y C, Huang S H et al. Fabrication of Ag-loaded multi-walled TiO2 nanotube arrays and their photocatalytic activity[J]. Journal of Materials Chemistry A, 1, 1987-1991(2013).

    [77] Gan Q, Bartoli F J, Kafafi Z H. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier[J]. Advanced Materials, 25, 2385-2396(2013).

    [78] Dudem B, Leem J W, Yu J S. A multifunctional hierarchical nano/micro-structured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask[J]. RSC Advances, 6, 3764-3773(2016).

    [79] Sai H, Fujii H, Kanamori Y et al. Numerical analysis and demonstration of submicron antireflective textures for crystalline silicon solar cells[C], 1191-1194(2006).

    [80] Callahan D M, Munday J N, Atwater H A. Solar cell light trapping beyond the ray optic limit[J]. Nano Letters, 12, 214-218(2012).

    [81] Sheng X, Liu J F, Coronel N et al. Integration of self-assembled porous alumina and distributed Bragg reflector for light trapping in Si photovoltaic devices[J]. IEEE Photonics Technology Letters, 22, 1394-1396(2010).

    [82] Qin F F, Zhang H M, Wang C X et al. Anodic aluminum oxide nanograting for back light trapping in thin c-Si solar cells[J]. Optics Communications, 331, 325-329(2014).

    [83] Qin F F, Zhang H M, Wang C X et al. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells[J]. Acta Physica Sinica, 63, 198802(2014).

    [84] Wu L, Zhang H M, Qin F F et al. Performance enhancement of pc-Si solar cells through combination of anti-reflection and light-trapping: functions of AAO nano-grating[J]. Optics Communications, 385, 205-212(2017).

    [85] Liu W, Wang X D, Xu R et al. Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask[J]. Materials Science in Semiconductor Processing, 16, 160-164(2013).

    [86] Sangar A, Merlen A, Torchio P et al. Fabrication and characterization of large metallic nanodots arrays for organic thin film solar cells using anodic aluminum oxide templates[J]. Solar Energy Materials and Solar Cells, 117, 657-662(2013).

    [87] Juan M L, Righini M, Quidant R. Plasmon nano-optical tweezers[J]. Nature Photonics, 5, 349-356(2011).

    [88] Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells[J]. Applied Physics Letters, 93, 121904(2008).

    [89] Jo H, Sohn A, Shin K S et al. Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics[J]. ACS Applied Materials & Interfaces, 6, 1030-1035(2014).

    [90] Ho W J, Cheng P Y, Hsiao K Y. Plasmonic silicon solar cell based on silver nanoparticles using ultra-thin anodic aluminum oxide template[J]. Applied Surface Science, 354, 25-30(2015).

    [91] Ho W J, Hsiao K Y, Hu C H et al. Characterized plasmonic effects of various metallic nanoparticles on silicon solar cells using the same anodic aluminum oxide mask for film deposition[J]. Thin Solid Films, 631, 64-71(2017).

    [92] Kang Y, Park N G, Kim D. Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer[J]. Applied Physics Letters, 86, 113101(2005).

    [93] Wu H, Yang J L, Cao S L et al. Ordered organic nanostructures fabricated from anodic alumina oxide templates for organic bulk-heterojunction photovoltaics[J]. Macromolecular Chemistry and Physics, 215, 584-596(2014).

    [94] Schierhorn M, Boettcher S W, Peet J H et al. CdSe nanorods dominate photocurrent of hybrid CdSe-P3HT photovoltaic cell[J]. ACS Nano, 4, 6132-6136(2010).

    [95] Kuo C Y, Tang W C, Gau C et al. Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer[J]. Applied Physics Letters, 93, 033307(2008).

    [96] Wang H S, Chen S Y, Su M H et al. Inverted heterojunction solar cells incorporating fullerene/polythiophene composite core/shell nanorod arrays[J]. Nanotechnology, 21, 145203(2010).

    [97] Allen J E, Yager K G, Hlaing H et al. Enhanced charge collection in confined bulk heterojunction organic solar cells[J]. Applied Physics Letters, 99, 163301(2011).

    [98] Aryal M, Buyukserin F, Mielczarek K et al. Imprinted large-scale high density polymer nanopillars for organic solar cells[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26, 2562-2566(2008).

    [99] Kayes B M, Atwater H A, Lewis N S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells[J]. Journal of Applied Physics, 97, 114302(2005).

    [100] Dang H M, Singh V. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells[J]. Materials Research Express, 2, 055001(2015).

    [101] Kwon H C, Ma S, Yun S C et al. A nanopillar-structured perovskite-based efficient semitransparent solar module for power-generating window applications[J]. Journal of Materials Chemistry A, 8, 1457-1468(2020).

    [102] Kwon H C, Yang W, Lee D et al. Investigating recombination and charge carrier dynamics in a one-dimensional nanopillared perovskite absorber[J]. ACS Nano, 12, 4233-4245(2018).

    [103] Chang C Y, Wu C E, Chen S Y et al. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods[J]. Angewandte Chemie International Edition, 50, 9386-9390(2011).

    [104] Allen J E, Black C T. Improved power conversion efficiency in bulk heterojunction organic solar cells with radial electron contacts[J]. ACS Nano, 5, 7986-7991(2011).

    [105] El-Said W A, Abdel-Shakour M, Abd-Elnaiem A M. An efficient and low-cost photoanode for backside illuminated dye-sensitized solar cell using 3D porous alumina[J]. Materials Letters, 222, 126-130(2018).

    [106] Fang B Z, Kim M, Fan S Q et al. Facile synthesis of open mesoporous carbon nanofibers with tailored nanostructure as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells[J]. Journal of Materials Chemistry, 21, 8742-8748(2011).

    [107] Martinson A B F, Góes M S, Fabregat-Santiago F et al. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics[J]. The Journal of Physical Chemistry A, 113, 4015-4021(2009).

    [108] Ghannadi S, Abdizadeh H, Rakhsha A et al. Sol-electrophoretic deposition of TiO2 nanoparticle/nanorod array for photoanode of dye-sensitized solar cell[J]. Materials Chemistry and Physics, 258, 123893(2021).

    [109] Andzane J, Kunakova G, Varghese J et al. Photoconductive properties of Bi2S3 nanowires[J]. Journal of Applied Physics, 117, 064305(2015).

    [110] Kuo C H, Wu J M, Lin S J et al. High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire[J]. Nanoscale Research Letters, 8, 327(2013).

    [111] Lin H, Liu H, Qian X et al. Constructing a blue light photodetector on inorganic/organic p-n heterojunction nanowire arrays[J]. Inorganic Chemistry, 50, 7749-7753(2011).

    [112] Chen C H, Yan J T, Lee C T. High responsivity ultraviolet photodetector based on p-GaN/i-ZnO nanorod/n-ZnO: in nanorod[J]. ECS Transactions, 28, 27-32(2019).

    [113] Maurya M R, Toutam V. Fast response UV detection based on waveguide characteristics of vertically grown ZnO nanorods partially embedded in anodic alumina template[J]. Nanotechnology, 30, 085704(2019).

    [114] Chahrour K M, Yam F K, Ahmed N M et al. AAO-assisted synthesis of aligned CuO nanorod arrays by electrochemical deposition for self-powered NIR photodetection[J]. Journal of Electronic Materials, 48, 7465-7473(2019).

    [115] Waleed A, Tavakoli M M, Gu L et al. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors[J]. Nano Letters, 17, 4951-4957(2017).

    [116] Gu L L, Zhang D Q, Kam M et al. Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates[J]. Nanoscale, 10, 15164-15172(2018).

    [117] Gu L, Poddar S, Lin Y et al. A biomimetic eye with a hemispherical perovskite nanowire array retina[J]. Nature, 581, 278-282(2020).

    [118] Gu L, Tavakoli M M, Zhang D et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires[J]. Advanced Materials, 28, 9713-9721(2016).

    [119] Waleed A, Tavakoli M M, Gu L et al. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates[J]. Nano Letters, 17, 523-530(2017).

    [120] Zhang D Q, Gu L L, Zhang Q P et al. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays[J]. Nano Letters, 19, 2850-2857(2019).

    [121] Xi Y Y, Han Y, Li G H et al. Application of heterostructures in halide perovskite photovoltaic devices[J]. Acta Physica Sinica, 69, 167804(2020).

    [122] Lin H, Chen K, Li M et al. Constructing a green light photodetector on inorganic/organic semiconductor homogeneous hybrid nanowire arrays with remarkably enhanced photoelectric response[J]. ACS Applied Materials & Interfaces, 11, 10146-10152(2019).

    [123] Maurya M R, Toutam V, Bathula S et al. Wide spectral photoresponse of template assisted out of plane grown ZnO/NiO composite nanowire photodetector[J]. Nanotechnology, 31, 025705(2020).

    [124] Wang G C, Li L, Fan W H et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance[J]. Advanced Functional Materials, 28, 1800339(2018).

    [125] Liu J Q, Zhai S Q, Liu S M et al. Improved performance of quantum dot cascade infrared photodetectors with nano-pore structure[J]. Journal of Nanoscience and Nanotechnology, 18, 7435-7439(2018).

    [126] Chang X H, Wang Y F, Abbasi H N et al. Pd nanoparticle size effects in localized surface plasmon-enhanced diamond photodetectors[J]. Optical Materials, 107, 110031(2020).

    [127] Gao M, Tian Z A, Tang S W et al. Ambipolar plasmon-enhanced photodetector built on germanium nanodots array/graphene hybrid[J]. Advanced Materials Interfaces, 7, 2001122(2020).

    [128] Pan L F, Li Q, Liu Z Q et al. Extraction efficiency of light-emitting diodes improved by AAO[J]. Semiconductor Technology, 36, 283-286(2011).

    [129] Fan X C, Hao Q, Qiu T et al. Improving the performance of light-emitting diodes via plasmonic-based strategies[J]. Journal of Applied Physics, 127, 040901(2020).

    [130] Zheng X, Jiang R, Qu X P et al. Large-scale pattern transfer based on non-through-hole AAO self-supporting membranes[J]. Nanotechnology, 31, 195301(2020).

    [131] Wang Y D, Chua S J, Tripathy S et al. High optical quality GaN nanopillar arrays[J]. Applied Physics Letters, 86, 071917(2005).

    [132] Dai T, Zhang B, Kang X N et al. Light extraction improvement from GaN-based light-emitting diodes with nano-patterned surface using anodic aluminum oxide template[J]. IEEE Photonics Technology Letters, 20, 1974-1976(2008).

    [133] Yu Z G, Zhao L X, Zhu S C et al. Optimization of the nanopore depth to improve the electroluminescence for GaN-based nanoporous green LEDs[J]. Materials Science in Semiconductor Processing, 33, 76-80(2015).

    [134] Fu X X, Zhang B, Kang X N et al. GaN-based light-emitting diodes with photonic crystals structures fabricated by porous anodic alumina template[J]. Optics Express, 19, A1104-A1108(2011).

    [135] Zheng X, Jiang R, Li Q et al. Research on anodic aluminum oxide nanostructured LEDs[J]. Journal of Inorganic Materials, 35, 561-566(2020).

    [136] Zhao Y, Fan B F, Chen Y T et al. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer[J]. Chinese Physics B, 25, 078502(2016).

    [137] Li G, Wang W, Yang W et al. GaN-based light-emitting diodes on various substrates: a critical review[J]. Reports on Progress in Physics, 79, 056501(2016).

    [138] Deng D M, Yu N S, Wang Y et al. InGaN-based light-emitting diodes grown and fabricated on nanopatterned Si substrates[J]. Applied Physics Letters, 96, 201106(2010).

    [139] Liou J K, Chen C C, Chou P C et al. Implementation of a high-performance GaN-based light-emitting diode grown on a nanocomb-shaped patterned sapphire substrate[J]. IEEE Journal of Quantum Electronics, 50, 973-980(2014).

    [140] Ke W C, Lee F W, Chiang C Y et al. InGaN-based light-emitting diodes grown on a micro/nanoscale hybrid patterned sapphire substrate[J]. ACS Applied Materials & Interfaces, 8, 34520-34529(2016).

    [141] Ma S, Kim S H, Jeong B et al. Strain-mediated phase stabilization: a new strategy for ultrastable α-CsPbI3 perovskite by nanoconfined growth[J]. Small, 15, 1900219(2019).

    [142] Zhang Q, Zhang D, Gu L et al. Three-dimensional perovskite nanophotonic wire array-based light-emitting diodes with significantly improved efficiency and stability[J]. ACS Nano, 14, 1577-1585(2020).

    [143] Um D S, Lee Y, Kim T et al. High-resolution filtration patterning of silver nanowire electrodes for flexible and transparent optoelectronic devices[J]. ACS Applied Materials & Interfaces, 12, 32154-32162(2020).

    [144] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 205-213(2010).

    [145] Wen L, Xu R, Mi Y et al. Multiple nanostructures based on anodized aluminium oxide templates[J]. Nature Nanotechnology, 12, 244-250(2017).

    [146] Zhang S, Ma B, Liu F et al. Polylactic acid nanopillar array-driven osteogenic differentiation of human adipose-derived stem cells determined by pillar diameter[J]. Nano Letters, 18, 2243-2253(2018).

    Jielian Shen, Ting Ji, Guohui Li, Linlin Shi, Lin Feng, Wenyan Wang, Dongdong Li, Yanxia Cui. Through-Hole Anodized Aluminum Oxide Template Assisted Fabrication of Patterned Nanostructures and Their Applications in Optoelectronic Devices[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0300001
    Download Citation