• Photonics Research
  • Vol. 10, Issue 12, 2751 (2022)
Kun Gao, Xiangyu Cao*, Jun Gao, Tong Li..., Huanhuan Yang and Sijia Li|Show fewer author(s)
Author Affiliations
  • Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi’an 710051, China
  • show less
    DOI: 10.1364/PRJ.470998 Cite this Article Set citation alerts
    Kun Gao, Xiangyu Cao, Jun Gao, Tong Li, Huanhuan Yang, Sijia Li, "Ultrawideband metamaterial absorber for oblique incidence using characteristic mode analysis," Photonics Res. 10, 2751 (2022) Copy Citation Text show less
    References

    [1] T. Cui. Electromagnetic metamaterials—from effective media to field programmable systems. Sci. Sin.-Inf., 50, 1427-1461(2020).

    [2] Z. Vafapour, H. Alaei. Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials. Plasmonics, 12, 1343-1352(2017).

    [3] K. J. Vinoy, R. M. Jha. Radar Absorbing Materials(1996).

    [4] Z. Zhang, M. Huang, Y. Chen, S.-W. Qu, J. Hu, S. Yang. In-band scattering control of ultra-wideband tightly coupled dipole arrays based on polarization-selective metamaterial absorber. IEEE Trans. Antennas Propag., 68, 7927-7936(2020).

    [5] P. Zuo, T. Li, M. Wang, H. Zheng, E.-P. Li. Miniaturized polarization insensitive metamaterial absorber applied on EMI suppression. IEEE Access, 8, 6583-6590(2020).

    [6] M. Karaaslan, M. Bağmancı, E. Ünal, O. Akgol, C. Sabah. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Opt. Commun., 392, 31-38(2017).

    [7] L. Lei, F. Lou, K. Tao, H. Huang, X. Cheng, X. Ping. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photon. Res., 7, 734-741(2019).

    [8] Z. Vafapour, E. S. Lari, M. R. Forouzeshfard. Breast cancer detection capability of a tunable perfect semiconductor absorber: analytical and numerical evaluation. Opt. Eng., 60, 107101(2021).

    [9] Z. Vafapour. Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at sub-THz band: design, numerical analysis, and physical interpretation. Sensors, 22, 2892(2022).

    [10] R. L. Fante, M. T. McCormack, T. D. Syst, M. A. Wilmington. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag., 36, 1443-1454(1988).

    [11] L. J. Du Toit. The design of Jauman absorbers. IEEE Antennas Propag. Mag., 36, 17-25(1994).

    [12] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [13] B. A. Munk. Frequency Selective Surfaces: Theory and Design(2000).

    [14] F. Costa, A. Monorchio, G. Manara. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag., 58, 1551-1558(2010).

    [15] B. Zhang, C. Jin, Z. Shen. Low-profile broadband absorber based on multimode resistor-embedded metallic strips. IEEE Trans. Microw. Theory Tech., 68, 835-843(2020).

    [16] Y. Shang, Z. Shen, S. Xiao. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag., 61, 6022-6029(2013).

    [17] M. Masyukov, A. N. Grebenchukov, E. A. Litvinov, A. Baldycheva, A. V. Vozianova, M. K. Khodzitsky. Photo-tunable terahertz absorber based on intercalated few-layer graphene. J. Opt., 22, 095105(2020).

    [18] Z. Yao, S. Xiao, Z. Jiang, L. Yan, B.-Z. Wang. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS. IEEE Antennas Wireless Propag. Lett., 19, 591-595(2020).

    [19] Z. Song, J. Zhu, L. Yang, P. Min, F. H. Lin. Wideband metasurface absorber (metabsorber) using characteristic mode analysis. Opt. Express, 29, 35387-35399(2021).

    [20] Z. Song, P. Min, J. Zhu, L. Yang, F. H. Lin. Wideband diffusion metabsorber for perfect scattering field reduction. Photon. Res., 10, 1361-1366(2022).

    [21] Y. Chen, K. Chen, D. Zhang, S. Li, Y. Xu, X. Wang, S. Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels. Photon. Res., 9, 1391-1396(2021).

    [22] J. Xie, S. Quader, F. Xiao, C. He, X. Liang, J. Geng, R. Jin, W. Zhu, I. D. Rukhlenko. Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wireless Propag. Lett., 18, 536-540(2019).

    [23] Y. Fang, K. Pan, T. Leng, H. H. Ouslimani, K. S. Novoselov, Z. Hu. Controlling graphene sheet resistance for broadband printable and flexible artificial magnetic conductor-based microwave radar absorber applications. IEEE Trans. Antennas Propag., 69, 8503-8511(2021).

    [24] S. Zhong, Y. Zhang, Y. Ma. Optically transparent frequency-tunable microwave absorber based on patterned graphene-ITO structure. IEEE Trans. Antennas Propag.(2022).

    [25] B. A. Munk, P. Munk, J. Pryor. On designing jaumann and circuit analog absorbers (CA Absorbers) for oblique angle of incidence. IEEE Trans. Antennas Propag., 55, 186-193(2007).

    [26] F. He, K. Si, R. Li, D. Zha, J. Dong, L. Miao, S. Bie, J. Jiang. Broadband frequency selective surface absorber with dual-section step-impedance matching for oblique incidence applications. IEEE Trans. Antennas Propag., 69, 7647-7657(2021).

    [27] Z. Yao, S. Xiao, Y. Li, B. Wang. Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers. IEEE Trans. Antennas Propag., 70, 7276-7281(2022).

    [28] R. F. Harrington, J. R. Mautz. Theory of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag., 19, 622-628(1971).

    [29] R. F. Harrington, J. R. Mautz, Y. Chang. Characteristic modes for dielectric and magnetic bodies. IEEE Trans. Antennas Propag., 20, 194-198(1972).

    [30] Y. Chen, C.-F. Wang. Characteristic Modes: Theory and Applications in Antenna Engineering(2015).

    [31] F. H. Lin, Z. N. Chen. Low-profile wideband metasurface antennas using characteristic mode analysis. IEEE Trans. Antennas Propag., 65, 1706-1713(2017).

    [32] F. H. Lin, Z. N. Chen. A method of suppressing higher-order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis. IEEE Trans. Antennas Propag., 66, 1894-1902(2018).

    [33] K. Gao, X. Y. Cao, J. Gao, H. H. Yang, J. F. Han. Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna. Chin. Phys. B, 30, 064101(2021).

    [34] K. Gao, X. Cao, J. Gao, T. Li, H. Yang, Z. Guo. Design of a low-RCS circularly polarized metasurface array using characteristic mode analysis. Opt. Mater. Express, 12, 907-917(2022).

    [35] P. Ylä-Oijala, D. C. Tzarouchis, E. Raninen, A. Sihvola. Characteristic mode analysis of plasmonic nanoantennas. IEEE Trans. Antennas Propag., 65, 2165-2172(2017).

    [36] J. J. Adams, S. Genovesi, B. Yang, E. Antonino-Daviu. Antenna element design using characteristic mode analysis: insights and research directions. IEEE Antennas Propag. Mag., 64, 32-40(2022).

    [37] D. Zha, J. Dong, Z. Cao, Y. Zhang, F. He, R. Li, Y. He, L. Miao, S. Bie, J. Jiang. A multimode, broadband and all-inkjet-printed absorber using characteristic mode analysis. Opt. Express, 28, 8609-8618(2020).

    [38] Y. Wu, H. Lin, J. Xiong, J. Hou, R. Zhou, F. Deng, R. Tang. A broadband metamaterial absorber design using characteristic modes analysis. J. Appl. Phys., 129, 134902(2021).

    [39] Z. Song, P. Min, L. Yang, J. Zhu, F. H. Lin. A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas Wireless Propag. Lett., 21, 1228-1232(2022).

    [40] S. Liu, F. Ding, J. Wu, Q. Zhang, H. Yang. A metamaterial absorber with centre-spin design and characteristic modes analysis. Phys. Scr., 97, 045502(2022).

    [41] H. Chen, Y. Huang, G. Li, Q. He, J. Xie, L. Deng. Design and experimental validation of a low-profile wideband metamaterial absorber by characteristic modes analysis. Results Phys., 28, 104684(2021).

    [42] T. Shi, M. C. Tang, D. Yi, L. Jin, M. Li, J. Wang, C. W. Qiu. Near-omnidirectional broadband metamaterial absorber for TM-polarized wave based on radiation pattern synthesis. IEEE Trans. Antennas Propag., 70, 420-429(2022).

    Kun Gao, Xiangyu Cao, Jun Gao, Tong Li, Huanhuan Yang, Sijia Li, "Ultrawideband metamaterial absorber for oblique incidence using characteristic mode analysis," Photonics Res. 10, 2751 (2022)
    Download Citation