• Photonics Research
  • Vol. 10, Issue 12, 2751 (2022)
Kun Gao, Xiangyu Cao*, Jun Gao, Tong Li, Huanhuan Yang, and Sijia Li
Author Affiliations
  • Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi’an 710051, China
  • show less
    DOI: 10.1364/PRJ.470998 Cite this Article Set citation alerts
    Kun Gao, Xiangyu Cao, Jun Gao, Tong Li, Huanhuan Yang, Sijia Li. Ultrawideband metamaterial absorber for oblique incidence using characteristic mode analysis[J]. Photonics Research, 2022, 10(12): 2751 Copy Citation Text show less
    References

    [1] T. Cui. Electromagnetic metamaterials—from effective media to field programmable systems. Sci. Sin.-Inf., 50, 1427-1461(2020).

    [2] Z. Vafapour, H. Alaei. Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials. Plasmonics, 12, 1343-1352(2017).

    [3] K. J. Vinoy, R. M. Jha. Radar Absorbing Materials(1996).

    [4] Z. Zhang, M. Huang, Y. Chen, S.-W. Qu, J. Hu, S. Yang. In-band scattering control of ultra-wideband tightly coupled dipole arrays based on polarization-selective metamaterial absorber. IEEE Trans. Antennas Propag., 68, 7927-7936(2020).

    [5] P. Zuo, T. Li, M. Wang, H. Zheng, E.-P. Li. Miniaturized polarization insensitive metamaterial absorber applied on EMI suppression. IEEE Access, 8, 6583-6590(2020).

    [6] M. Karaaslan, M. Bağmancı, E. Ünal, O. Akgol, C. Sabah. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Opt. Commun., 392, 31-38(2017).

    [7] L. Lei, F. Lou, K. Tao, H. Huang, X. Cheng, X. Ping. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photon. Res., 7, 734-741(2019).

    [8] Z. Vafapour, E. S. Lari, M. R. Forouzeshfard. Breast cancer detection capability of a tunable perfect semiconductor absorber: analytical and numerical evaluation. Opt. Eng., 60, 107101(2021).

    [9] Z. Vafapour. Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at sub-THz band: design, numerical analysis, and physical interpretation. Sensors, 22, 2892(2022).

    [10] R. L. Fante, M. T. McCormack, T. D. Syst, M. A. Wilmington. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag., 36, 1443-1454(1988).

    [11] L. J. Du Toit. The design of Jauman absorbers. IEEE Antennas Propag. Mag., 36, 17-25(1994).

    [12] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [13] B. A. Munk. Frequency Selective Surfaces: Theory and Design(2000).

    [14] F. Costa, A. Monorchio, G. Manara. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag., 58, 1551-1558(2010).

    [15] B. Zhang, C. Jin, Z. Shen. Low-profile broadband absorber based on multimode resistor-embedded metallic strips. IEEE Trans. Microw. Theory Tech., 68, 835-843(2020).

    [16] Y. Shang, Z. Shen, S. Xiao. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag., 61, 6022-6029(2013).

    [17] M. Masyukov, A. N. Grebenchukov, E. A. Litvinov, A. Baldycheva, A. V. Vozianova, M. K. Khodzitsky. Photo-tunable terahertz absorber based on intercalated few-layer graphene. J. Opt., 22, 095105(2020).

    [18] Z. Yao, S. Xiao, Z. Jiang, L. Yan, B.-Z. Wang. On the design of ultrawideband circuit analog absorber based on quasi-single-layer FSS. IEEE Antennas Wireless Propag. Lett., 19, 591-595(2020).

    [19] Z. Song, J. Zhu, L. Yang, P. Min, F. H. Lin. Wideband metasurface absorber (metabsorber) using characteristic mode analysis. Opt. Express, 29, 35387-35399(2021).

    [20] Z. Song, P. Min, J. Zhu, L. Yang, F. H. Lin. Wideband diffusion metabsorber for perfect scattering field reduction. Photon. Res., 10, 1361-1366(2022).

    [21] Y. Chen, K. Chen, D. Zhang, S. Li, Y. Xu, X. Wang, S. Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels. Photon. Res., 9, 1391-1396(2021).

    [22] J. Xie, S. Quader, F. Xiao, C. He, X. Liang, J. Geng, R. Jin, W. Zhu, I. D. Rukhlenko. Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wireless Propag. Lett., 18, 536-540(2019).

    [23] Y. Fang, K. Pan, T. Leng, H. H. Ouslimani, K. S. Novoselov, Z. Hu. Controlling graphene sheet resistance for broadband printable and flexible artificial magnetic conductor-based microwave radar absorber applications. IEEE Trans. Antennas Propag., 69, 8503-8511(2021).

    [24] S. Zhong, Y. Zhang, Y. Ma. Optically transparent frequency-tunable microwave absorber based on patterned graphene-ITO structure. IEEE Trans. Antennas Propag.(2022).

    [25] B. A. Munk, P. Munk, J. Pryor. On designing jaumann and circuit analog absorbers (CA Absorbers) for oblique angle of incidence. IEEE Trans. Antennas Propag., 55, 186-193(2007).

    [26] F. He, K. Si, R. Li, D. Zha, J. Dong, L. Miao, S. Bie, J. Jiang. Broadband frequency selective surface absorber with dual-section step-impedance matching for oblique incidence applications. IEEE Trans. Antennas Propag., 69, 7647-7657(2021).

    [27] Z. Yao, S. Xiao, Y. Li, B. Wang. Wide-angle, ultra-wideband, polarization-independent circuit analog absorbers. IEEE Trans. Antennas Propag., 70, 7276-7281(2022).

    [28] R. F. Harrington, J. R. Mautz. Theory of characteristic modes for conducting bodies. IEEE Trans. Antennas Propag., 19, 622-628(1971).

    [29] R. F. Harrington, J. R. Mautz, Y. Chang. Characteristic modes for dielectric and magnetic bodies. IEEE Trans. Antennas Propag., 20, 194-198(1972).

    [30] Y. Chen, C.-F. Wang. Characteristic Modes: Theory and Applications in Antenna Engineering(2015).

    [31] F. H. Lin, Z. N. Chen. Low-profile wideband metasurface antennas using characteristic mode analysis. IEEE Trans. Antennas Propag., 65, 1706-1713(2017).

    [32] F. H. Lin, Z. N. Chen. A method of suppressing higher-order modes for improving radiation performance of metasurface multiport antennas using characteristic mode analysis. IEEE Trans. Antennas Propag., 66, 1894-1902(2018).

    [33] K. Gao, X. Y. Cao, J. Gao, H. H. Yang, J. F. Han. Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna. Chin. Phys. B, 30, 064101(2021).

    [34] K. Gao, X. Cao, J. Gao, T. Li, H. Yang, Z. Guo. Design of a low-RCS circularly polarized metasurface array using characteristic mode analysis. Opt. Mater. Express, 12, 907-917(2022).

    [35] P. Ylä-Oijala, D. C. Tzarouchis, E. Raninen, A. Sihvola. Characteristic mode analysis of plasmonic nanoantennas. IEEE Trans. Antennas Propag., 65, 2165-2172(2017).

    [36] J. J. Adams, S. Genovesi, B. Yang, E. Antonino-Daviu. Antenna element design using characteristic mode analysis: insights and research directions. IEEE Antennas Propag. Mag., 64, 32-40(2022).

    [37] D. Zha, J. Dong, Z. Cao, Y. Zhang, F. He, R. Li, Y. He, L. Miao, S. Bie, J. Jiang. A multimode, broadband and all-inkjet-printed absorber using characteristic mode analysis. Opt. Express, 28, 8609-8618(2020).

    [38] Y. Wu, H. Lin, J. Xiong, J. Hou, R. Zhou, F. Deng, R. Tang. A broadband metamaterial absorber design using characteristic modes analysis. J. Appl. Phys., 129, 134902(2021).

    [39] Z. Song, P. Min, L. Yang, J. Zhu, F. H. Lin. A bilateral coding metabsorber using characteristic mode analysis. IEEE Antennas Wireless Propag. Lett., 21, 1228-1232(2022).

    [40] S. Liu, F. Ding, J. Wu, Q. Zhang, H. Yang. A metamaterial absorber with centre-spin design and characteristic modes analysis. Phys. Scr., 97, 045502(2022).

    [41] H. Chen, Y. Huang, G. Li, Q. He, J. Xie, L. Deng. Design and experimental validation of a low-profile wideband metamaterial absorber by characteristic modes analysis. Results Phys., 28, 104684(2021).

    [42] T. Shi, M. C. Tang, D. Yi, L. Jin, M. Li, J. Wang, C. W. Qiu. Near-omnidirectional broadband metamaterial absorber for TM-polarized wave based on radiation pattern synthesis. IEEE Trans. Antennas Propag., 70, 420-429(2022).

    Kun Gao, Xiangyu Cao, Jun Gao, Tong Li, Huanhuan Yang, Sijia Li. Ultrawideband metamaterial absorber for oblique incidence using characteristic mode analysis[J]. Photonics Research, 2022, 10(12): 2751
    Download Citation