• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 3, 399 (2024)
PU Lei1,*, QIU Yan1, LU Bowen1, ZHU Bin2..., MEI Jinna2, CAI Zhen2, WU Jian3, LI Xingwen3, LI Yongdong1 and HANG Yuhua2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
  • 2Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215004, China
  • 3State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.03.003 Cite this Article
    Lei PU, Yan QIU, Bowen LU, Bin ZHU, Jinna MEI, Zhen CAI, Jian WU, Xingwen LI, Yongdong LI, Yuhua HANG. Review of instrumentation development of laser⁃induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 399 Copy Citation Text show less
    References

    [1] Ciucci A, Corsi M, Palleschi V et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy, 53, 960-964(1999).

    [2] Zeng Q, Sirven J B, Gabriel J C P et al. Laser induced breakdown spectroscopy for plastic analysis[J]. TrAC Trends in Analytical Chemistry, 140, 116280(2021).

    [3] Limbeck A, Brunnbauer L, Lohninger H et al. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy[J]. Analytica Chimica Acta, 1147, 72-98(2021).

    [4] Legnaioli S, Campanella B, Poggialini F et al. Industrial applications of laser-induced breakdown spectroscopy: A review[J]. Analytical Methods, 12, 1014-1029(2020).

    [5] Lee Y N, Foster R I, Kim H et al. Machine learning-assisted laser-induced breakdown spectroscopy for monitoring molten salt compositions of small modular reactor fuel under varying laser focus positions[J]. Analytica Chimica Acta, 1241, 340804(2023).

    [6] Ni M H, Li Y, Yi Z X et al. Application status of laser induced breakdown spectroscopy in coal quality detection[J]. Chinese Journal of Inorganic Analytical Chemistry, 12, 80-88(2022).

    [7] Winefordner J D, Gornushkin I B, Correll T et al. Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star[J]. Journal of Analytical Atomic Spectrometry, 19, 1061-1083(2004).

    [8] Brech F, Cross K. Optical microemission stimulated by a ruby laser[J]. Applied Spectroscopy, 16, 59-64(1962).

    [9] Radziemski L J, Cremers D A, Loree T R. Detection of beryllium by laser-induced-breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 38, 349-355(1983).

    [10] Palleschi V, Ramakrishna B. Forty years of laser-induced breakdown spectroscopy and laser and particle beams[J]. Laser and Particle Beams, 2023, e4(2023).

    [11] Yu J, Ma Q L, Motto-Ros V et al. Generation and expansion of laser-induced plasma as a spectroscopic emission source[J]. Frontiers of Physics, 7, 649-669(2012).

    [12] Noll R[M]. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, 7-12(2012).

    [13] Liu C S, Tripathi V K, Eliasson B[M]. High-Power Laser-Plasma Interaction(2019).

    [14] Delserieys A P. Optical Diagnostics of Laser Plasmas[D](2008).

    [15] Thomas J, Chandra Joshi H. Review on laser-induced breakdown spectroscopy: Methodology and technical developments[J]. Applied Spectroscopy Reviews, 59, 124-155(2024).

    [16] Galbács G[M]. Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences, 7-16(2022).

    [17] Takahashi T, Thornton B. Quantitative methods for compensation of matrix effects and self-absorption in laser induced breakdown spectroscopy signals of solids[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 138, 31-42(2017).

    [18] Yu Z Y, Yao S C, Jiang Y et al. Comparison of the matrix effect in laser induced breakdown spectroscopy analysis of coal particle flow and coal pellets[J]. Journal of Analytical Atomic Spectrometry, 36, 2473-2479(2021).

    [19] Wiens R C, Maurice S, Clegg S et al. Preparation of onboard calibration targets for the ChemCam instruments on the Mars Science Laboratory Rover[C](2007).

    [20] Li X Y, Liu K, Zhou R et al. Laser-induced breakdown spectroscopy and its application[J]. Chinese Journal of Lasers, 49, 1202003(2022).

    [21] Yang J W, Kong L H, Lian G F et al. Surface hardness determination of 3D printed parts using laser-induced breakdown spectroscopy[J]. Applied Optics, 60, 499-504(2021).

    [22] Völker T, Gornushkin I B. Investigation of a method for the correction of self-absorption by Planck function in laser induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 38, 911-916(2023).

    [23] Karnadi I, Pardede M, Tanra I et al. Suppression of self-absorption in laser-induced breakdown spectroscopy using a double pulse orthogonal configuration to create vacuum-like conditions in atmospheric air pressure[J]. Scientific Reports, 10, 13278(2020).

    [24] Xu P, Jia R, Yao G X et al. Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression[J]. Chinese Journal of Quantum Electronics, 39, 485-493(2022).

    [25] Wang Y X, Yao M Y, Chen W J. Automatic peak detection of laser-induced breakdown spectroscopy using Gold deconvolution algorithm[J]. Chinese Journal of Quantum Electronics, 40, 816-826(2023).

    [26] Insight Ocean. 一体化激光诱导击穿光谱仪ACCULIBS 2500[EB/OL]. http://www.oceaninsightasia.com/Products-26495873.html

    [27] Ferreira E C, Milori D M B P, Ferreira E J et al. Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application[J]. Talanta, 85, 435-440(2011).

    [28] Spectra Applied. J200Tandem LA-LIBS Instrument[EB/OL]. https://appliedspectra.com/products/j200-tandem-libs-la.html

    [29] Dong M R, Wei L P, Lu J D et al. A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS[J]. Journal of Analytical Atomic Spectrometry, 34, 480-488(2019).

    [30] Zhang Y S, Dong M R, Cai J B et al. Study on the evaluation of the aging grade for industrial heat-resistant steel by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 37, 139-147(2022).

    [31] SECOPTA Analytics GmbH. 德国赛柯普塔公司的LIBS仪器[EB/OL]. https://www.secopta.com/applications/molten-material

    [32] Lasertechnik Berlin GmbH LTB. LTB激光产品[EB/OL]. http://www.ltb-china.com/cms/jiguangguangpuxitongSpectrometerssystem.html

    [33] Merk S, Scholz C, Florek S et al. Increased identification rate of scrap metal using laser induced breakdown spectroscopy echelle spectra[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 112, 10-15(2015).

    [37] Inc. Elemission. OUR LIBS ANALYZERS[EB/OL]. https://www.elemission.ca/products

    [38] Rifai K, Michaud Paradis M C, Swierczek Z et al. Emergences of new technology for ultrafast automated mineral phase identification and quantitative analysis using the CORIOSITY laser-induced breakdown spectroscopy (LIBS) system[J]. Minerals, 10, 918(2020).

    [39] Paradis M C M, Doucet F R, Rifai K et al. ECORE: A new fast automated quantitative mineral and elemental core scanner[J]. Minerals, 11, 859(2021).

    [40] AtomTrace. Evolution in Multi-Elemental Chemical Analysis[EB/OL]. https://www.atomtrace.com/

    [41] Lightigo. FireFly[EB/OL]. https://lightigo.com/firefly/

    [43] Zhong H G, Wang R J, Han Q Y et al. Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions[J]. Journal of Materials Research and Technology, 20, 3408-3419(2022).

    [50] Akhtyrchenko Y V, Belyaev E B, Vysotskii Y P et al. Nonlinear power attenuation of the radiation of a pulsed CO2 laser in the atmosphere near the ground[J]. Soviet Physics Journal, 26, 105-112(1983).

    [51] Kumar V S, Vasa N J, Sarathi R. Remote surface pollutant measurement by adopting a variable stand-off distance based laser induced spectroscopy technique[J]. Journal of Physics D: Applied Physics, 48, 435504(2015).

    [52] Sallé B, Mauchien P, Maurice S. Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 739-768(2007).

    [53] De Morais C P, Babos D V, Costa V C et al. Direct determination of Cu, Cr, and Ni in river sediments using double pulse laser-induced breakdown spectroscopy: Ecological risk and pollution level assessment[J]. Science of the Total Environment, 837, 155699(2022).

    [54] Elhamdaoui I, Mohamed N, Selmani S et al. Rapid quantitative analysis of palladium in ores using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence (LIBS-LIF)[J]. Journal of Analytical Atomic Spectrometry, 37, 2537-2545(2022).

    [55] Junjuri R, Prakash Gummadi A, Kumar Gundawar M. Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks[J]. Optik, 204, 163946(2020).

    [56] Gong Y, Choi D, Han B Y et al. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy[J]. Journal of Nuclear Materials, 453, 8-15(2014).

    [57] Barnett P D, Lamsal N, Angel S M. Standoff laser-induced breakdown spectroscopy (LIBS) using a miniature wide field of view spatial heterodyne spectrometer with sub-microsteradian collection optics[J]. Applied Spectroscopy, 71, 583-590(2017).

    [58] Li C, You J J, Wu H C et al. Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 22, 074008(2020).

    [59] Zhang D C, Feng Z Q, Wei K et al. Remote laser-induced breakdown spectroscopy and its application[J]. Acta Photonica Sinica, 50, 1030001(2021).

    [60] Gaona I, Serrano J, Moros J et al. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 96, 12-20(2014).

    [62] Laserna J, Lucena P, Ferrero A et al. Standoff LIBS sensor technology. Fieldable, remotely operated platforms for detection of explosive residues[C], 1-18(2007).

    [63] Liu C Q, Ling Z C, Zhang J et al. A stand-off laser-induced breakdown spectroscopy (LIBS) system applicable for Martian rocks studies[J]. Remote Sensing, 13, 4773(2021).

    [64] Vinod P, Babu M S, Sarathi R et al. Influence of standoff distance and sunlight on detection of pollution deposits on silicone rubber insulators adopting remote LIBS analysis[J]. IEEE Transactions on Industry Applications, 58, 3285-3293(2022).

    [65] Durand M, Houard A, Prade B et al. Kilometer range filamentation[J]. Optics Express, 21, 26836-26845(2013).

    [66] Shaik A K, Soma V R. Standoff discrimination and trace detection of explosive molecules using femtosecond filament induced breakdown spectroscopy combined with silver nanoparticles[J]. OSA Continuum, 2, 554(2019).

    [67] Burger M, Polynkin P, Jovanovic I. Filament-induced breakdown spectroscopy with structured beams[J]. Optics Express, 28, 36812-36821(2020).

    [68] Kautz E J, Phillips M C, Harilal S S. Laser-induced fluorescence of filament-produced plasmas[J]. Journal of Applied Physics, 130, 203302(2021).

    [69] Shi M X, Wu J, Zhou Y et al. Parametric study of spot size and multi-elemental quantification of geomaterials under complex matrix conditions using fiber-optic laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 192, 106428(2022).

    [70] Davies C M, Telle H H, Montgomery D J et al. Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS)[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 50, 1059-1075(1995).

    [71] Gruber J, Heitz J, Strasser H et al. Rapid in situ analysis of liquid steel by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 685-693(2001).

    [72] Zeng Q D, Chen G H, Chen X G et al. Rapid online analysis of trace elements in steel using a mobile fiber-optic laser-induced breakdown spectroscopy system[J]. Plasma Science and Technology, 22, 074013(2020).

    [73] Noharet B, Sterner C, Irebo T et al[M]. A Compact LIBS System for Industrial Applications(2015).

    [74] Zeng Q D, Zhu Z H, Deng F et al. Quantitative analyses of element Mn in iron using portable laser-induced breakdown spectroscopy with algorithm of background removal based on wavelet transform[J]. Acta Photonica Sinica, 47, 0847014(2018).

    [75] Chen F, Lu W J, Chu Y W et al. High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 180, 106160(2021).

    [76] Lü Q S, Qiu Y, Tang F et al. Parameters of laser-induced breakdown spectroscopy system using fiber-optic transmission laser[J]. High Voltage Engineering, 46, 3301-3310(2020).

    [77] Rakovský J, Čermák P, Musset O et al. A review of the development of portable laser induced breakdown spectroscopy and its applications[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 269-287(2014).

    [78] Senesi G S, Harmon R S, Hark R R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects[J]. Spectrochimica Acta, 175, 106013(2021).

    [79] Zeng Q D, Yuan M T, Zhu Z H et al. Research progress on portable laser-induced breakdown spectroscopy[J]. Chinese Optics, 14, 470-486(2021).

    [80] Yamamoto K Y, Cremers D A, Ferris M J et al. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument[J]. Applied Spectroscopy, 50, 222-233(1996).

    [81] Foucaud Y, Fabre C, Demeusy B et al. Optimisation of fast quantification of fluorine content using handheld laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 158, 105628(2019).

    [82] Yan J J, Li X Y. Research on a new portable laser-induced breakdown spectroscopy system and its application[J]. Metallurgical Analysis, 40, 66-71(2020).

    [83] Zhao C J, Dong D M, Du X F et al. In-field, in situ, and in vivo 3-dimensional elemental mapping for plant tissue and soil analysis using laser-induced breakdown spectroscopy[J]. Sensors, 16, 1764(2016).

    [84] Cremers D A, Beddingfield A, Smithwick R et al. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer[J]. Applied Spectroscopy, 66, 250-261(2012).

    [85] Hu Z Y, Zhang L, Yin W B et al. Application of laser-induced breakdown spectroscopy to coal-fired power plants and soil contaminants on-line monitoring[J]. Journal of Atmospheric and Environmental Optics, 8, 26-35(2013).

    [86] Yan J J, Yang P, Zhou R et al. Classification accuracy improvement by data preprocessing in handheld laser-induced breakdown spectroscopy[J]. Analytical Methods, 11, 5177-5184(2019).

    [87] Pérez-Diez S, Fernández-Menéndez L J, Veneranda M et al. Chemometrics and elemental mapping by portable LIBS to identify the impact of volcanogenic and non-volcanogenic degradation sources on the mural paintings of Pompeii[J]. Analytica Chimica Acta, 1168, 338565(2021).

    [88] Schlatter N, Lottermoser B G, Illgner S et al. Utilising portable laser-induced breakdown spectroscopy for quantitative inorganic water testing[J]. Chemosensors, 11, 479(2023).

    [89] D'Amico S, Venuti V[M]. Handbook of Cultural Heritage Analysis(2022).

    Lei PU, Yan QIU, Bowen LU, Bin ZHU, Jinna MEI, Zhen CAI, Jian WU, Xingwen LI, Yongdong LI, Yuhua HANG. Review of instrumentation development of laser⁃induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 399
    Download Citation