[1] Ciucci A, Corsi M, Palleschi V et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy[J]. Applied Spectroscopy, 53, 960-964(1999).
[2] Zeng Q, Sirven J B, Gabriel J C P et al. Laser induced breakdown spectroscopy for plastic analysis[J]. TrAC Trends in Analytical Chemistry, 140, 116280(2021).
[3] Limbeck A, Brunnbauer L, Lohninger H et al. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy[J]. Analytica Chimica Acta, 1147, 72-98(2021).
[4] Legnaioli S, Campanella B, Poggialini F et al. Industrial applications of laser-induced breakdown spectroscopy: A review[J]. Analytical Methods, 12, 1014-1029(2020).
[5] Lee Y N, Foster R I, Kim H et al. Machine learning-assisted laser-induced breakdown spectroscopy for monitoring molten salt compositions of small modular reactor fuel under varying laser focus positions[J]. Analytica Chimica Acta, 1241, 340804(2023).
[6] Ni M H, Li Y, Yi Z X et al. Application status of laser induced breakdown spectroscopy in coal quality detection[J]. Chinese Journal of Inorganic Analytical Chemistry, 12, 80-88(2022).
[7] Winefordner J D, Gornushkin I B, Correll T et al. Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star[J]. Journal of Analytical Atomic Spectrometry, 19, 1061-1083(2004).
[8] Brech F, Cross K. Optical microemission stimulated by a ruby laser[J]. Applied Spectroscopy, 16, 59-64(1962).
[9] Radziemski L J, Cremers D A, Loree T R. Detection of beryllium by laser-induced-breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 38, 349-355(1983).
[10] Palleschi V, Ramakrishna B. Forty years of laser-induced breakdown spectroscopy and laser and particle beams[J]. Laser and Particle Beams, 2023, e4(2023).
[11] Yu J, Ma Q L, Motto-Ros V et al. Generation and expansion of laser-induced plasma as a spectroscopic emission source[J]. Frontiers of Physics, 7, 649-669(2012).
[12] Noll R[M]. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications, 7-12(2012).
[13] Liu C S, Tripathi V K, Eliasson B[M]. High-Power Laser-Plasma Interaction(2019).
[14] Delserieys A P. Optical Diagnostics of Laser Plasmas[D](2008).
[15] Thomas J, Chandra Joshi H. Review on laser-induced breakdown spectroscopy: Methodology and technical developments[J]. Applied Spectroscopy Reviews, 59, 124-155(2024).
[16] Galbács G[M]. Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences, 7-16(2022).
[17] Takahashi T, Thornton B. Quantitative methods for compensation of matrix effects and self-absorption in laser induced breakdown spectroscopy signals of solids[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 138, 31-42(2017).
[18] Yu Z Y, Yao S C, Jiang Y et al. Comparison of the matrix effect in laser induced breakdown spectroscopy analysis of coal particle flow and coal pellets[J]. Journal of Analytical Atomic Spectrometry, 36, 2473-2479(2021).
[19] Wiens R C, Maurice S, Clegg S et al. Preparation of onboard calibration targets for the ChemCam instruments on the Mars Science Laboratory Rover[C](2007).
[20] Li X Y, Liu K, Zhou R et al. Laser-induced breakdown spectroscopy and its application[J]. Chinese Journal of Lasers, 49, 1202003(2022).
[21] Yang J W, Kong L H, Lian G F et al. Surface hardness determination of 3D printed parts using laser-induced breakdown spectroscopy[J]. Applied Optics, 60, 499-504(2021).
[22] Völker T, Gornushkin I B. Investigation of a method for the correction of self-absorption by Planck function in laser induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 38, 911-916(2023).
[23] Karnadi I, Pardede M, Tanra I et al. Suppression of self-absorption in laser-induced breakdown spectroscopy using a double pulse orthogonal configuration to create vacuum-like conditions in atmospheric air pressure[J]. Scientific Reports, 10, 13278(2020).
[24] Xu P, Jia R, Yao G X et al. Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression[J]. Chinese Journal of Quantum Electronics, 39, 485-493(2022).
[25] Wang Y X, Yao M Y, Chen W J. Automatic peak detection of laser-induced breakdown spectroscopy using Gold deconvolution algorithm[J]. Chinese Journal of Quantum Electronics, 40, 816-826(2023).
[27] Ferreira E C, Milori D M B P, Ferreira E J et al. Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application[J]. Talanta, 85, 435-440(2011).
[29] Dong M R, Wei L P, Lu J D et al. A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS[J]. Journal of Analytical Atomic Spectrometry, 34, 480-488(2019).
[30] Zhang Y S, Dong M R, Cai J B et al. Study on the evaluation of the aging grade for industrial heat-resistant steel by laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 37, 139-147(2022).
[33] Merk S, Scholz C, Florek S et al. Increased identification rate of scrap metal using laser induced breakdown spectroscopy echelle spectra[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 112, 10-15(2015).
[37] Inc. Elemission. OUR LIBS ANALYZERS[EB/OL]. https://www.elemission.ca/products
[38] Rifai K, Michaud Paradis M C, Swierczek Z et al. Emergences of new technology for ultrafast automated mineral phase identification and quantitative analysis using the CORIOSITY laser-induced breakdown spectroscopy (LIBS) system[J]. Minerals, 10, 918(2020).
[39] Paradis M C M, Doucet F R, Rifai K et al. ECORE: A new fast automated quantitative mineral and elemental core scanner[J]. Minerals, 11, 859(2021).
[40] AtomTrace. Evolution in Multi-Elemental Chemical Analysis[EB/OL]. https://www.atomtrace.com/
[41] Lightigo. FireFly[EB/OL]. https://lightigo.com/firefly/
[43] Zhong H G, Wang R J, Han Q Y et al. Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions[J]. Journal of Materials Research and Technology, 20, 3408-3419(2022).
[50] Akhtyrchenko Y V, Belyaev E B, Vysotskii Y P et al. Nonlinear power attenuation of the radiation of a pulsed CO2 laser in the atmosphere near the ground[J]. Soviet Physics Journal, 26, 105-112(1983).
[51] Kumar V S, Vasa N J, Sarathi R. Remote surface pollutant measurement by adopting a variable stand-off distance based laser induced spectroscopy technique[J]. Journal of Physics D: Applied Physics, 48, 435504(2015).
[52] Sallé B, Mauchien P, Maurice S. Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 739-768(2007).
[53] De Morais C P, Babos D V, Costa V C et al. Direct determination of Cu, Cr, and Ni in river sediments using double pulse laser-induced breakdown spectroscopy: Ecological risk and pollution level assessment[J]. Science of the Total Environment, 837, 155699(2022).
[54] Elhamdaoui I, Mohamed N, Selmani S et al. Rapid quantitative analysis of palladium in ores using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence (LIBS-LIF)[J]. Journal of Analytical Atomic Spectrometry, 37, 2537-2545(2022).
[55] Junjuri R, Prakash Gummadi A, Kumar Gundawar M. Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks[J]. Optik, 204, 163946(2020).
[56] Gong Y, Choi D, Han B Y et al. Remote quantitative analysis of cerium through a shielding window by stand-off laser-induced breakdown spectroscopy[J]. Journal of Nuclear Materials, 453, 8-15(2014).
[57] Barnett P D, Lamsal N, Angel S M. Standoff laser-induced breakdown spectroscopy (LIBS) using a miniature wide field of view spatial heterodyne spectrometer with sub-microsteradian collection optics[J]. Applied Spectroscopy, 71, 583-590(2017).
[58] Li C, You J J, Wu H C et al. Temporal and spatial evolution measurement of laser-induced breakdown spectroscopy on hydrogen retention in tantalum[J]. Plasma Science and Technology, 22, 074008(2020).
[59] Zhang D C, Feng Z Q, Wei K et al. Remote laser-induced breakdown spectroscopy and its application[J]. Acta Photonica Sinica, 50, 1030001(2021).
[60] Gaona I, Serrano J, Moros J et al. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 96, 12-20(2014).
[62] Laserna J, Lucena P, Ferrero A et al. Standoff LIBS sensor technology. Fieldable, remotely operated platforms for detection of explosive residues[C], 1-18(2007).
[63] Liu C Q, Ling Z C, Zhang J et al. A stand-off laser-induced breakdown spectroscopy (LIBS) system applicable for Martian rocks studies[J]. Remote Sensing, 13, 4773(2021).
[64] Vinod P, Babu M S, Sarathi R et al. Influence of standoff distance and sunlight on detection of pollution deposits on silicone rubber insulators adopting remote LIBS analysis[J]. IEEE Transactions on Industry Applications, 58, 3285-3293(2022).
[65] Durand M, Houard A, Prade B et al. Kilometer range filamentation[J]. Optics Express, 21, 26836-26845(2013).
[66] Shaik A K, Soma V R. Standoff discrimination and trace detection of explosive molecules using femtosecond filament induced breakdown spectroscopy combined with silver nanoparticles[J]. OSA Continuum, 2, 554(2019).
[67] Burger M, Polynkin P, Jovanovic I. Filament-induced breakdown spectroscopy with structured beams[J]. Optics Express, 28, 36812-36821(2020).
[68] Kautz E J, Phillips M C, Harilal S S. Laser-induced fluorescence of filament-produced plasmas[J]. Journal of Applied Physics, 130, 203302(2021).
[69] Shi M X, Wu J, Zhou Y et al. Parametric study of spot size and multi-elemental quantification of geomaterials under complex matrix conditions using fiber-optic laser-induced breakdown spectroscopy[J]. Spectrochimica Acta, 192, 106428(2022).
[70] Davies C M, Telle H H, Montgomery D J et al. Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS)[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 50, 1059-1075(1995).
[71] Gruber J, Heitz J, Strasser H et al. Rapid in situ analysis of liquid steel by laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 56, 685-693(2001).
[72] Zeng Q D, Chen G H, Chen X G et al. Rapid online analysis of trace elements in steel using a mobile fiber-optic laser-induced breakdown spectroscopy system[J]. Plasma Science and Technology, 22, 074013(2020).
[73] Noharet B, Sterner C, Irebo T et al[M]. A Compact LIBS System for Industrial Applications(2015).
[74] Zeng Q D, Zhu Z H, Deng F et al. Quantitative analyses of element Mn in iron using portable laser-induced breakdown spectroscopy with algorithm of background removal based on wavelet transform[J]. Acta Photonica Sinica, 47, 0847014(2018).
[75] Chen F, Lu W J, Chu Y W et al. High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 180, 106160(2021).
[76] Lü Q S, Qiu Y, Tang F et al. Parameters of laser-induced breakdown spectroscopy system using fiber-optic transmission laser[J]. High Voltage Engineering, 46, 3301-3310(2020).
[77] Rakovský J, Čermák P, Musset O et al. A review of the development of portable laser induced breakdown spectroscopy and its applications[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 101, 269-287(2014).
[78] Senesi G S, Harmon R S, Hark R R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects[J]. Spectrochimica Acta, 175, 106013(2021).
[79] Zeng Q D, Yuan M T, Zhu Z H et al. Research progress on portable laser-induced breakdown spectroscopy[J]. Chinese Optics, 14, 470-486(2021).
[80] Yamamoto K Y, Cremers D A, Ferris M J et al. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument[J]. Applied Spectroscopy, 50, 222-233(1996).
[81] Foucaud Y, Fabre C, Demeusy B et al. Optimisation of fast quantification of fluorine content using handheld laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 158, 105628(2019).
[82] Yan J J, Li X Y. Research on a new portable laser-induced breakdown spectroscopy system and its application[J]. Metallurgical Analysis, 40, 66-71(2020).
[83] Zhao C J, Dong D M, Du X F et al. In-field, in situ, and in vivo 3-dimensional elemental mapping for plant tissue and soil analysis using laser-induced breakdown spectroscopy[J]. Sensors, 16, 1764(2016).
[84] Cremers D A, Beddingfield A, Smithwick R et al. Monitoring uranium, hydrogen, and lithium and their isotopes using a compact laser-induced breakdown spectroscopy (LIBS) probe and high-resolution spectrometer[J]. Applied Spectroscopy, 66, 250-261(2012).
[85] Hu Z Y, Zhang L, Yin W B et al. Application of laser-induced breakdown spectroscopy to coal-fired power plants and soil contaminants on-line monitoring[J]. Journal of Atmospheric and Environmental Optics, 8, 26-35(2013).
[86] Yan J J, Yang P, Zhou R et al. Classification accuracy improvement by data preprocessing in handheld laser-induced breakdown spectroscopy[J]. Analytical Methods, 11, 5177-5184(2019).
[87] Pérez-Diez S, Fernández-Menéndez L J, Veneranda M et al. Chemometrics and elemental mapping by portable LIBS to identify the impact of volcanogenic and non-volcanogenic degradation sources on the mural paintings of Pompeii[J]. Analytica Chimica Acta, 1168, 338565(2021).
[88] Schlatter N, Lottermoser B G, Illgner S et al. Utilising portable laser-induced breakdown spectroscopy for quantitative inorganic water testing[J]. Chemosensors, 11, 479(2023).
[89] D'Amico S, Venuti V[M]. Handbook of Cultural Heritage Analysis(2022).