• Chinese Journal of Quantum Electronics
  • Vol. 41, Issue 3, 399 (2024)
PU Lei1,*, QIU Yan1, LU Bowen1, ZHU Bin2..., MEI Jinna2, CAI Zhen2, WU Jian3, LI Xingwen3, LI Yongdong1 and HANG Yuhua2|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
  • 2Suzhou Nuclear Power Research Institute Co., Ltd., Suzhou 215004, China
  • 3State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2024.03.003 Cite this Article
    Lei PU, Yan QIU, Bowen LU, Bin ZHU, Jinna MEI, Zhen CAI, Jian WU, Xingwen LI, Yongdong LI, Yuhua HANG. Review of instrumentation development of laser⁃induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 399 Copy Citation Text show less
    Typical dynamic evolution of laser-induced plasma in air
    Fig. 1. Typical dynamic evolution of laser-induced plasma in air
    Characteristics of radiation evolution of laser-induced plasma at different stages
    Fig. 2. Characteristics of radiation evolution of laser-induced plasma at different stages
    Schematic diagram of a typical laboratory laser-induced breakdown spectroscopy system[16]
    Fig. 3. Schematic diagram of a typical laboratory laser-induced breakdown spectroscopy system[16]
    ACCULIBS 2500 of Ocean Insight[26]
    Fig. 4. ACCULIBS 2500 of Ocean Insight[26]
    J200 Tandem LA-LIBS of Applied Spectra[28]
    Fig. 5. J200 Tandem LA-LIBS of Applied Spectra[28]
    FiberLIBS lab (a) and MopaLIBS (b) of SECOPTA Analytics[31]
    Fig. 6. FiberLIBS lab (a) and MopaLIBS (b) of SECOPTA Analytics[31]
    CALIBSO (a) and LIBSorter 300 (b) of LTB[32]
    Fig. 7. CALIBSO (a) and LIBSorter 300 (b) of LTB[32]
    LIBSCAN 150-10 (a) and Gemmology (b) of Applied Photonics Ltd.[34]
    Fig. 8. LIBSCAN 150-10 (a) and Gemmology (b) of Applied Photonics Ltd.[34]
    MEEPLIBS [35] (a) and MobiLIBS (b) [36] of IVEA
    Fig. 9. MEEPLIBS [35] (a) and MobiLIBS (b) [36] of IVEA
    ECORE FLEX of Elemission[37]
    Fig. 10. ECORE FLEX of Elemission[37]
    Sci-Trace of AtomTrace[40]
    Fig. 11. Sci-Trace of AtomTrace[40]
    FireFly of Lightigo[41]
    Fig. 12. FireFly of Lightigo[41]
    LIBSOPA-200 of NCS [42]
    Fig. 13. LIBSOPA-200 of NCS [42]
    SIA-LIBSlurry of SIACAS&BGRIMM MTC[44]
    Fig. 14. SIA-LIBSlurry of SIACAS&BGRIMM MTC[44]
    MOL-2020FC of BGRIMM MTC[45]
    Fig. 15. MOL-2020FC of BGRIMM MTC[45]
    EcoChem of Aozuo Ecology Instrumentation[46]
    Fig. 16. EcoChem of Aozuo Ecology Instrumentation[46]
    CrossTIME (a) and DualTime (b) of Optime[47]
    Fig. 17. CrossTIME (a) and DualTime (b) of Optime[47]
    LIBS-Tracer (a) and AGT-LIBS (b) of Aliben[48]
    Fig. 18. LIBS-Tracer (a) and AGT-LIBS (b) of Aliben[48]
    iSpec-LIBS-IND (a) and iSpec-LIBS800 (b) of LiSenOptics [49]
    Fig. 19. iSpec-LIBS-IND (a) and iSpec-LIBS800 (b) of LiSenOptics [49]
    SRLIBS-20, a remote LIBS device developed by CGN Suzhou Thermal Engineering Research Institute[61]
    Fig. 20. SRLIBS-20, a remote LIBS device developed by CGN Suzhou Thermal Engineering Research Institute[61]
    Schematic diagram of optical fiber energy transfer LIBS system[69]
    Fig. 21. Schematic diagram of optical fiber energy transfer LIBS system[69]
    Section view of the suitcase fiber energy transfer LIBS box developed by CGN Suzhou Thermal Engineering Research Institute and an enlarged view of the fiber coupling module
    Fig. 22. Section view of the suitcase fiber energy transfer LIBS box developed by CGN Suzhou Thermal Engineering Research Institute and an enlarged view of the fiber coupling module
    Structure diagram of handheld LIBS instrument developed by Yan et al.[86]
    Fig. 23. Structure diagram of handheld LIBS instrument developed by Yan et al.[86]
    VendorInstrument

    Laser

    (wave length, pulse width, repeatedfrequency, pulse energy)

    Spectrometer

    (detection range, resolution)

    Reference
    Ocean InsightACCULIBS 2500

    Nd:YAG

    1064/532/266 nm opt

    50/200 mJ opt

    MX2500+, CCD, 8 Chan opt

    180~1100 nm, 0.1 nm (FWHM)

    [26]
    Applied SpectraJ200 Tandem

    Q-switched Nd:YAG

    213/266/532/1064 nm opt

    @213 nm: < 5 ns, > 20 J/cm2

    Czerny-Turner, ICCD (HP)

    Echelle, ICCD (B)

    multichannel, CCD (EC)

    [28]
    LTBCALIBSO

    diode pumped laser

    1064 nm, 40 Hz

    1~26 mJ stepless adjustable

    Echelle

    210~850 nm, 0.028~0.113 nm

    6 Mpixel CMOS

    [32]
    Applied Photonics Ltd.LIBSCAN 150-10

    Q-switched Nd:YAG

    1064 nm, 4~8 ns,

    ≤ 10 Hz, ≤ 150 mJ @10 Hz

    182~1016 nm (8 Chan opt)

    FWHM ≤ 0.14 nm

    4096 pixels CMOS

    [34]
    IVEAMEEP

    UV Nd:YAG (Quantel)

    266 nm, 4 ns,

    0.2~1 mJ stepless adjustable

    Mechelle 5000, ICCD

    200~975 nm

    0.08 nm @500 nm

    [35]
    AtomTraceSci-Trace

    Nd:YAG laser (DPSS alt)

    200 mJ @1064 nm,

    4~6 ns, 20 Hz

    Echelle, ICCD

    200~975 nm

    resolution up to 5000/λ

    [40]
    LightigoFireFly

    DPSS Nd:YAG

    5 ns, ≤ 100 Hz, 1064 nm (60 mJ)/532 nm (30 mJ)/266 nm (12 mJ)

    Czerny-Turner or Ehelle, CCD/CMOS, 180~1100 nm, resolution < 0.05 nm[41]
    NCSLIBSOPA-200

    lamp pumped Q-switched

    (SureliteTM III-10)

    1064 nm, 5~7 ns, 1~10 Hz, 700 mJ

    170~800 nm, 0.01 nm[42]
    Aozuo Ecology InstrumentationEcoChem

    1064 nm, < 6 ns, 20 Hz, 200 mJ

    (25 mJ @266 nm opt)

    190~1040 nm, ± 0.05 nm[46]
    OptimeCrossTIME

    Nd:YAG, 1064 nm (laser No. opt),

    6~8 ns, 1~20 Hz, 400 mJ

    micro-optical fiber spectrometer array, 185~1100 nm, CCD[47]
    LiSenOpticsiSpec-LIBS800

    Nd:YAG, 266 nm, 50mJ/pluse

    (or 100~200 mJ/pluse @1064 nm)

    5~10 ns, 10 Hz

    4 channels, 190~820 nm, 0.2 nm

    8 channels, 190~1070 nm, 0.1 nm

    [49]
    Table 1. Basic component parameters of some commercial benchtop LIBS instruments
    Lei PU, Yan QIU, Bowen LU, Bin ZHU, Jinna MEI, Zhen CAI, Jian WU, Xingwen LI, Yongdong LI, Yuhua HANG. Review of instrumentation development of laser⁃induced breakdown spectroscopy[J]. Chinese Journal of Quantum Electronics, 2024, 41(3): 399
    Download Citation