• Infrared and Laser Engineering
  • Vol. 45, Issue 9, 902002 (2016)
Zhong Xu1、*, Wang Xuezhi2, Cooley Nicola3, Farrell Peter4, and Moran Bill2
Author Affiliations
  • 1Department of Infrastructure Engineering, University of Melbourne, VIC 3010, Australia
  • 2School of Electrical and Computer Engineering, Royal Melbourne Institute Technology, VIC 3000, Australia
  • 3Higher Education-Primary Industy, NMIT and Melbourne Polytechnic, NMIT Epping Campus, Victoria 3076, Australia
  • 4Department of Electrical and Electronic Engineering, University of Melbourne, VIC 3010, Australia
  • show less
    DOI: 10.3788/irla201645.0902002 Cite this Article
    Zhong Xu, Wang Xuezhi, Cooley Nicola, Farrell Peter, Moran Bill. Taking the pulse of a plant: dynamic laser speckle analysis of plants[J]. Infrared and Laser Engineering, 2016, 45(9): 902002 Copy Citation Text show less
    References

    [1] Zhong X, Wang X, Farrell P, et al. Modeling and classifying surface roughness via laser speckle statistics[C]//Proceedings of the 2011 International Conference on Signal and Information Processing, Shanghai China, 2011.

    [2] Jones Hamlyn G, Vaughan Robin A. Remote Sensing of Vegetation: Principles, Techniques, and Applications[M]. Oxford: Oxford University Press, 2010.

    [3] Buckley T N, Mott K A, Farquhar G D. A hydromechanical and biochemical model of stom-atal conductance[J]. Plant, Cell & Environment, 2003, 26(10): 1767-1785.

    [4] Bowman William D. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves[J]. Remote Sensing of Environment, 1989, 30(3): 249-255.

    [5] Saliendra Nicanor Z, Sperry John S, Comstock Jonathan P. Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in betula occidentalis[J]. Planta, 1995, 196(2): 357-366.

    [6] Mohammad R Riahi, Hamid Latifi, Mohsen Sajjadi. Speckle correlation photography for the study of water content and sap flow in plant leaves[J]. Applied Optics, 2006, 45(29): 7674-7678.

    [7] Tsukasa Matsuo, Hisashi Hirabayashi, Hiroaki Ishizawa, et al. Application of laser speckle method to water flow measurement in plant body[C]//Proceedings of the 2006 International Joint Conference on SICE-ICASE, 2006: 3563-3566.

    [8] Kawamura M, Ishizawa H, Horiguchi T, et al. Laser speckle pattern measurement for plant state monitoring[C]// Proceedings of the 2010 SICE Annual Conference, 2010:2928-2932.

    [9] Wang Xuezhi, Yang Weiping, Ashley Wheaton, et al. Automated canopy temperature estimation via infrared thermography: a first step towards automated plant water stress monitoring[J]. Computers and Electronics in Agriculture, 2010, 73(1): 74-83.

    [10] Rabal H J. Dynamic Laser Speckle and Applications[M]. New York: CRC Press, 2008.

    [11] Ricardo Arizaga, Nelly Luci, Marcelo Trivi, et al. Display of local activity using dynamical speckle patterns[J]. Optical Engineering, 2002, 41(2): 287-294.

    [12] Briers J David, Webster Sian. Laser speckle contrast analysis (lasca): a nonscanning, full-field technique for monitoring capillary blood flow[J]. Journal of Biomedical Optics, 1996, 1(2): 174-179.

    [13] Briers J David. Laser doppler, speckle and related techniques for blood perfusion mapping and imaging[J]. Physiological Measurement, 2001, 22(4): R35.

    [14] Miao Peng, Li Minheng, Fontenelle Hugues, et al. Imaging the cerebral blood flow with enhanced laser speckle contrast analysis (elasca) by monotonic point transformation[J]. Biomedical Engineering, IEEE Transactions on, 2009, 56(4): 1127-1133.

    [15] Miao P, Rege A, Li N, et al. High resolution cerebral blood flow imag-ing by registered laser speckle contrast analysis[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(5): 1152-1157.

    [16] Forrester K R, Tulip J, Leonard C, et al. A laser speckle imaging technique for measuring tissue perfusion[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(11): 2074-2084.

    [17] Stewart J B. Modelling surface conductance of pine forest[J]. Agricultural and Forest Meteorology, 1988, 43(1): 19-35.

    [18] Elaine Miles, Ann Roberts. Non-destructive speckle imaging of subsurface detail in paper-based cultural materials[J]. Optics Express, 2009, 17(15): 12309-12314.

    [19] Zhong Xu, Wang Xuezhi, Nicola Cooley, et al. Normal vector based dynamic laser speckle analysis for plant water status monitoring[J]. Optics Communications, 2014, 313: 256-262.

    [20] Braga Jr R A, Horgan G W, Enes A M, et al. Biological feature isolation by wavelets in biospeckle laser images[J]. Computers and Electronics in Agriculture, 2007, 58(2):123-132.

    [21] Nobre C M B, Braga Jr R A, Costa A G, et al. Biospeckle laser spectral analysis under inertia moment, entropy and cross-spectrum methods[J]. Optics Communications, 2009, 282(11): 2236-2242.

    [22] Zhong Xu, Wang Xuezhi, Nicola Cooley, et al. Dynamic laser speckle analysis via normal vector space statistics[J]. Optics Communications, 2013, 305(313): 27-35.

    [23] Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant, Cell & Environment, 2003, 26(7): 1097-1116.

    [25] Susanna Von Caemmerer. Biochemical Models of Leaf Photosynthesis[M]. Austrilia: Csiro Publishing, 2000.

    [26] Driscoll S P, Prins A, Olmos Enrique, et al. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves[J]. Journal of Experimental Botany, 2006, 57(2): 381-390.

    [27] Belinda E Medlyn, Remko A Duursma, Derek Eamus, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology, 2011, 17(6): 2134-2144.

    [28] Xavier Chone, Cornelis Van Leeuwen, Denis Dubourdieu. Stem water potential is a sensitive indicator of grapevine water status[J]. Annals of Botany, 2001, 87(4): 477-483.

    [29] Frangi A, Niessen W, Vincken K, et al. Multiscale vessel enhancement filtering[J]. Medical Image Computing and Computer-Assisted Interventation -MICCAI′98, 1998: 130-137.

    [30] James Collatz G, Timothy Ball J, Cyril Grivet, et al. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer[J]. Agricultural and Forest Meteorology, 1991, 54(2): 107-136.

    [31] Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants[J]. Plant, Cell & Environment, 1995, 18(4): 339-355.

    [32] Gabriel Katul, Stefano Manzoni, Sari Palmroth, et al. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration[J]. Annals of Botany, 2010, 105(3): 431-442.

    [33] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.

    [34] Kirschbaum MUF, Küppers M, Schneider H. Modelling photosynthesis in fluctuating light with inclusion of stomatal conductance, biochemical activation and pools of key photosynthetic intermediates[J]. Planta, 1997, 204(1): 16-26.

    [35] Uwe Rascher, Ladislav Nedbal. Dynamics of photosynthesis in fluctuating light[J]. Current Opinion in Plant Biology, 2006, 9(6): 671-678.

    [36] Kirschbaum MUF, Gross L J, Pearcy R W. Observed and modelled stomatal responses to dynamic light environments in the shade plant alocasia macrorrhiza[J]. Plant, Cell & Environment, 1988, 11(2): 111-121.

    [37] Silvère Vialet-Chabrand, Erwin Dreyer, Oliver Brendel. Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level[J]. Plant, Cell & Environment, 2013, 8: 1529-1546.

    Zhong Xu, Wang Xuezhi, Cooley Nicola, Farrell Peter, Moran Bill. Taking the pulse of a plant: dynamic laser speckle analysis of plants[J]. Infrared and Laser Engineering, 2016, 45(9): 902002
    Download Citation