• Acta Optica Sinica
  • Vol. 44, Issue 1, 0106024 (2024)
Kuo Luo1、2, Yuyao Wang3, Borong Zhu1、2, and Kuanglu Yu1、2、*
Author Affiliations
  • 1Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
  • 2Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing 100044, China
  • 3Photonics Research Institute, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • show less
    DOI: 10.3788/AOS231120 Cite this Article Set citation alerts
    Kuo Luo, Yuyao Wang, Borong Zhu, Kuanglu Yu. Noise Reduction of Brillouin Distributed Optical Fiber Sensors Based on Generative Adversarial Network[J]. Acta Optica Sinica, 2024, 44(1): 0106024 Copy Citation Text show less
    References

    [1] Liu J Y, Wang T, Zhang Q et al. Research progress on temperature-strain dual-parameter sensing in BOTDA system[J]. Laser & Optoelectronics Progress, 58, 1306021(2021).

    [2] Yang F, Chen T J L, Lu Y Y et al. Investigation on inversion algorithm of seawater parameters measurement based on Brillouin scattering[J]. Chinese Journal of Lasers, 49, 0404001(2022).

    [3] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 12, 8601-8639(2012).

    [4] Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100 km sensing length[J]. Optics Letters, 36, 277-279(2011).

    [5] Galindez C A, Quintela A, Quintela M A et al. 30 cm of spatial resolution using pre-excitation pulse BOTDA technique[J]. Proceedings of SPIE, 7753, 77532H(2011).

    [6] Alahbabi M N, Cho Y T, Newson T P. Long-range distributed temperature and strain optical fibre sensor based on the coherent detection of spontaneous Brillouin scattering with in-line Raman amplification[J]. Measurement Science and Technology, 17, 1082-1090(2006).

    [7] Song M P, Xia Q L, Feng K B et al. 100 km Brillouin optical time-domain reflectometer based on unidirectionally pumped Raman amplification[J]. Optical and Quantum Electronics, 48, 30(2016).

    [8] Luo Y, Yan L S, Shao L Y et al. Golay-differential pulse hybrid coding technology based on Brillouin optical time domain analysis sensors[J]. Acta Optica Sinica, 36, 0806002(2016).

    [9] Wang F, Zhu C H, Cao C Q et al. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding[J]. Optics Express, 25, 3504-3513(2017).

    [10] Li Y Q, Li X J, Fan H B et al. SNR improvement in self-heterodyne detection Brillouin optical time domain reflectometer using Golay pulse codes[J]. Optoelectronics Letters, 13, 414-418(2017).

    [11] Hao Y Q, Ye Q, Pan Z Q et al. Effects of modulated pulse format on spontaneous Brillouin scattering spectrum and BOTDR sensing system[J]. Optics & Laser Technology, 46, 37-41(2013).

    [12] Zhang Y X, Wu X L, Ying Z F et al. Performance improvement for long-range BOTDR sensing system based on high extinction ratio modulator[J]. Electronics Letters, 50, 1014-1016(2014).

    [13] Bai Q, Xue B, Gu H et al. Enhancing the SNR of BOTDR by gain-switched modulation[J]. IEEE Photonics Technology Letters, 31, 283-286(2019).

    [14] Wang F, Li C L, Zhao X D et al. Using a Mach-Zehnder-interference-based passive configuration to eliminate the polarization noise in Brillouin optical time domain reflectometry[J]. Applied Optics, 51, 176-180(2012).

    [15] Zhao Y, Zhang Y N, Han B et al. High sensitive BOTDR demodulation method by using slow-light in fiber grating[J]. Journal of Lightwave Technology, 31, 3345-3351(2013).

    [16] Cao Y L, Ye Q, Pan Z Q et al. Mitigation of polarization fading in BOTDR sensors by using optical pulses with orthogonal polarizations[J]. Proceedings of SPIE, 9157, 915764(2014).

    [17] Zhang Q, Wang T, Zhao J R et al. Denoising algorithm for Brillouin optical time-domain analysis sensing systems based on local mean decomposition[J]. Acta Optica Sinica, 41, 1306009(2021).

    [18] Nie T Y, Li J Q, Ding Y J et al. Fast extraction for Brillouin frequency shift in BOTDA system[J]. Optical and Quantum Electronics, 53, 1-9(2021).

    [19] Li X, Wang L X, Duan Z Q. Application of improved adaptive wavelet noise reduction in laser gyroscope signal processing[J]. Laser & Optoelectronics Progress, 57, 210401(2020).

    [20] Luo K, Wang B W, Guo N et al. Enhancing SNR by anisotropic diffusion for Brillouin distributed optical fiber sensors[J]. Journal of Lightwave Technology, 38, 5844-5852(2020).

    [21] Zhang P X, Wang B W, Yang Y N et al. SNR enhancement for Brillouin distributed optical fiber sensors based on asynchronous control[J]. Optics Express, 30, 4231-4248(2022).

    [22] Buades A, Coll B, Morel J M. Non-local means denoising[J]. Image Processing on Line, 1, 208-212(2011).

    [23] Zheng H, Yan Y X, Wang Y Y et al. Deep learning enhanced long-range fast BOTDA for vibration measurement[J]. Journal of Lightwave Technology, 40, 262-268(2022).

    [24] Urricelqui J, Soto M A, Thévenaz L. Sources of noise in Brillouin optical time-domain analyzers[J]. Proceedings of SPIE, 9634, 963434(2015).

    [25] Wu H, Wan Y Y, Tang M et al. Real-time denoising of Brillouin optical time domain analyzer with high data fidelity using convolutional neural networks[J]. Journal of Lightwave Technology, 37, 2648-2653(2019).

    [26] Yang Y N, Dong Y, Yu K L. SNR improvement based on attention-DNet for Brillouin distributed optical fiber sensors[C](2022).

    [27] Tian C W, Xu Y, Zuo W M. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 121, 461-473(2020).

    [28] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative adversarial networks[J]. Communications of the ACM, 63, 139-144(2020).

    [29] Hu Y T, Shang Q F. Performance enhancement of BOTDA based on the image super-resolution reconstruction[J]. IEEE Sensors Journal, 22, 3397-3404(2022).

    [30] Shi Y, Dai S W, Liu X Y et al. Event recognition method based on dual-augmentation for a Φ-OTDR system with a few training samples[J]. Optics Express, 30, 31232-31243(2022).

    [31] Creswell A, White T, Dumoulin V et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 35, 53-65(2018).

    [32] Chen J W, Chen J W, Chao H Y et al. Image blind denoising with generative adversarial network based noise modeling[C], 3155-3164(2018).

    [33] Yan H S, Tan V, Yang W H et al. Unsupervised image noise modeling with self-consistent GAN[EB/OL]. https://arxiv.org/abs/1906.05762

    [34] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. https://arxiv.org/abs/1502.03167

    [35] Xu B, Wang N Y, Chen T Q et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. https://arxiv.org/abs/1505.00853

    [36] Massey F J,. The Kolmogorov-Smirnov test for goodness of fit[J]. Journal of the American Statistical Association, 46, 68-78(1951).

    Kuo Luo, Yuyao Wang, Borong Zhu, Kuanglu Yu. Noise Reduction of Brillouin Distributed Optical Fiber Sensors Based on Generative Adversarial Network[J]. Acta Optica Sinica, 2024, 44(1): 0106024
    Download Citation