• Chinese Optics Letters
  • Vol. 20, Issue 1, 012601 (2022)
Yihua Bai, Haoran Lv, Xin Fu, and Yuanjie Yang*
Author Affiliations
  • School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    DOI: 10.3788/COL202220.012601 Cite this Article Set citation alerts
    Yihua Bai, Haoran Lv, Xin Fu, Yuanjie Yang. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601 Copy Citation Text show less
    References

    [1] J. H. Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum of a beam of circularly polarised light. Proc. R. Soc. Lond. A, 82, 560(1909).

    [2] C. G. Darwin. Notes on the theory of radiation. Proc. R. Soc. Lond. A, 136, 36(1932).

    [3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev. A, 45, 8185(1992).

    [4] A. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161(2011).

    [5] J. Durnin, J. J. Miceli, J. Eberly. Diffraction-free beams. Phys. Rev. Lett., 58, 1499(1987).

    [6] J. Gutierrez-Vega, M. Iturbe-Castillo, S. Chavez-Cerda. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett., 25, 1493(2000).

    [7] N. Bozinovic, Y. Yue, Y. Ren, T. P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545(2013).

    [8] H. He, M. E. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826(1995).

    [9] J. Leach, B. Jack, J. Romero, A. K. Jha, A. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, M. J. Padgett. Quantum correlations in optical angle-orbital angular momentum variables. Science, 329, 662(2010).

    [10] P. Chen, L. Ma, W. Duan, J. Chen, S. Ge, Z. Zhu, M. Tang, R. Xu, W. Gao, T. Li, W. Hu, Y. Lu. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater., 30, 1705865(2018).

    [11] P. Chen, L. Ma, W. Hu, Z. Shen, H. K. Bisoyi, S. Wu, S. Ge, Q. Li, Y. Lu. Chirality invertible superstructure mediated active planar optics. Nat. Commun., 10, 2518(2019).

    [12] M. W. Beijersbergen, L. Allen, H. van der Veen, J. P. Woerdman. Astigmatic laser mode converters and transfer of orbital angular-momentum. Opt. Commun., 112, 321(1993).

    [13] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun., 112, 321(1994).

    [14] S. S. R. Oemrawsingh, J. A. W. Van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt., 43, 688(2004).

    [15] W. Lee, X. Yuan, W. Cheong. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett., 29, 1796(2004).

    [16] C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, S. G. Lipson. Adjustable spiral phase plate. Appl. Opt., 43, 2397(2004).

    [17] W. Wu, Z. Sheng, H. Wu. Design and application of flat spiral phase plate. Acta Phys. Sin., 68, 054102(2019).

    [18] A. Vijayakumar, C. Rosales-Guzman, M. R. Rai, J. Rosen, O. V. Minin, I. V. Minin, A. Forbes. Generation of structured light by multilevel orbital angular momentum holograms. Opt. Express, 27, 6459(2019).

    [19] V. Bazhenov, M. Vasnetsov, M. Soskin. Laser beams with screw dislocations in their wavefronts. JETP Lett., 52, 429(1990).

    [20] V. Bazhenov, M. S. Soskin, M. V. Vasnetsov. Screw dislocations in light wavefronts. J. Mod. Opt., 39, 985(2007).

    [21] L. Stoyanov, S. Topuzoski, I. Stefanov, L. Janicijevic, A. Dreischuh. Far field diffraction of an optical vortex beam by a fork-shaped grating. Opt. Commun., 350, 301(2015).

    [22] N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White. Generation of optical phase singularities by computer-generated holograms. Opt. Lett., 17, 221(1992).

    [23] A. Sakdinawat, Y. Liu. Soft-X-ray microscopy using spiral zone plates. Opt. Lett., 32, 2635(2007).

    [24] K. Saitoh, Y. Hasegawa, N. Tanaka, M. Uchida. Production of electron vortex beams carrying large orbital angular momentum using spiral zone plates. J. Electron. Microsc., 61, 171(2012).

    [25] C. Rosales-Guzmán, A. Forbes. How to Shape Light with Spatial Light Modulators(2017).

    [26] G. Gibson, J. C. Miles, M. J. Padgett. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448(2004).

    [27] R. S. Nesbitt, S. L. Smith, R. A. Molnar, S. A. Benton. Holographic recording using a digital micromirror device. Proc. SPIE, 3637, 12(1999).

    [28] K. J. Mitchell, S. Turtaev, M. J. Padgett, T. Cizmar, D. B. Phillips. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express, 24, 29269(2016).

    [29] W. H. Lee. Binary synthetic holograms. Appl. Opt., 13, 1677(1974).

    [30] V. Lerner, D. S. Drori, N. Katz. Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device. Opt. Lett., 37, 4826(2012).

    [31] Y. Ren, M. Huang, Z. Wang, J. Wu, Y. Li. Experimental generation of Laguerre-Gaussian beam using digital micromirror device. Appl. Opt., 49, 1838(2010).

    [32] M. Mirhosseini, O. S. M. Loaiza, C. Chen, B. Rodenburg, M. Malik, R. W. Boyd. Rapid generation of light beams carrying orbital angular momentum. Opt. Express, 21, 30196(2013).

    [33] Y. Chen, Z. Fang, Y. Ren, L. Gong, R. Lu. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device. Appl. Opt., 54, 8030(2015).

    [34] S. A. Goorden, J. Bertolotti, A. P. Mosk. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device. Opt. Express, 22, 17999(2014).

    [35] L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seemann. Sharper images by focusing soft X-rays with photon sieves. Nature, 414, 184(2001).

    [36] K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, C. W. Qiu. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun., 6, 7059(2015).

    [37] C. Xie, X. Shi, M. Liu. Spiral photon sieves apodized by digital prolate spheroidal window for the generation of hard-X-ray vortex. Opt. Lett., 35, 1765(2010).

    [38] R. Liu, F. Li, M. J. Padgett, D. B. Phillips. Generalized photon sieves: fine control of complex fields with simple pinhole arrays. Optica, 2, 1028(2015).

    [39] Y. Yang, G. Thirunavukkarasu, M. Babiker, J. Yuan. Orbital-angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams. Phys. Rev. Lett., 119, 094802(2017).

    [40] Y. Yang, Q. Zhao, L. Liu, Y. Liu, C. Rosales-Guzmán, C. Qiu. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys. Rev. A, 12, 064007(2019).

    [41] J. Lin, P. Genevet, M. A. Kats, N. Antoniou, F. Capasso. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett., 13, 4269(2013).

    [42] C. Min, J. Liu, T. Lei, G. Si, Z. Xie, J. Lin, L. Du, X. Yuan. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photon. Rev., 10, 978(2016).

    [43] Z. Xie, T. Lei, G. Si, X. Wang, J. Lin, C. Min, X. Yuan. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photon., 4, 2158(2017).

    [44] Z. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, X. Li. Facile metagrating holograms with broadband and extreme angle tolerance. Light-Sci. Appl., 7, 78(2018).

    [45] Y. Zhang, W. Liu, J. Gao, X. Yang. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv. Opt. Mater., 6, 1701228(2018).

    [46] F. Yue, D. Wen, J. Xin. Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 3, 1558(2016).

    [47] R. Dharmavarapu, K. Izumi, I. Katayama, S. H. Ng, J. Vongsvivut, M. J. Tobin, A. Kuchmizhak, Y. Nishijima, S. Bhattacharya, S. Juodkazis. Dielectric cross-shaped resonator based metasurface for vortex beam generation in mid-IR and THz wavelengths. Nanophotonics, 8, 1263(2019).

    [48] C. Min, J. Liu, T. Lei, G. Si, Z. Xie, J. Lin, L. Du, X. Yuan. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photon. Rev., 10, 978(2016).

    [49] M. Khorasaninejad, W. Chen, R. C. Devlin, J. Oh, A. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190(2016).

    [50] M. L. N. Chen, L. Jiang, W. E. I. Sha. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies. IEEE Trans. Antenn. Propag., 65, 396(2017).

    [51] A. Zhao, A. Pham, A. Drezet. Plasmonic fork-shaped hologram for vortex-beam generation and separation. Opt. Lett., 46, 689(2021).

    [52] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [53] J. Sun, X. Wang, T. Xu, Z. A. Kudyshev, A. N. Cartwright, N. M. Litchinitser. Spinning light on the nanoscale. Nano. Lett., 14, 2726(2014).

    [54] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896(2017).

    [55] M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, C. Qiu. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater., 28, 2533(2016).

    [56] Y. Shi, B. Shen, L. Zhang, X. Zhang, W. Wang, Z. Xu. Light fan driven by a relativistic laser pulse. Phys. Rev. Lett., 112, 235001(2014).

    [57] M. Beresna, M. Gecevicius, P. G. Kazansky. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass. Opt. Mater. Express, 1, 783(2011).

    [58] M. Gecevicius, R. Drevinskas, M. Beresna, P. G. Kazansky. Single beam optical vortex tweezers with tunable orbital angular momentum. Appl. Phys. Lett., 104, 231110(2014).

    [59] J. A. Davis, N. H. M. Kurihara, E. Hurtado, M. Pierce, M. M. Sanchez-Lopez, K. Badham, I. Moreno. Analysis of a segmented q-plate tunable retarder for the generation of first-order vector beams. Appl. Opt., 54, 9583(2015).

    [60] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [61] J. F. Bisson, J. Li, K. Ueda, Y. Senatsky. Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping. Laser. Phys. Lett., 2, 327(2005).

    [62] A. Ito, Y. Kozawa, S. Sato. Generation of hollow scalar and vector beams using a spot-defect mirror. J. Opt. Soc. Am. A, 27, 2072(2010).

    [63] M. Okida, T. Omatsu, M. Itoh, T. Yatagai. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3 µm bounce laser. Opt. Express, 15, 7616(2007).

    [64] G. Porat, I. Dolev, O. Barlev, A. Arie. Airy beam laser. Opt. Lett., 36, 4119(2011).

    [65] Y. Yang, L. Wu, Y. Liu, D. Xie, Z. Jin, J. Li, G. Hu, C. Qiu. Deuterogenic plasmonic vortices. Nano. Lett., 20, 6774(2020).

    [66] L. Wu, X. Li, Y. Yang. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Phys. Sin., 68, 234201(2019).

    [67] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667(1998).

    [68] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen. Beaming light from a subwavelength aperture. Science, 297, 820(2002).

    [69] G. M. Lerman, A. Yanai, U. Levy. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light. Nano Lett., 9, 2139(2009).

    [70] H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, N. F. van Hulst. Creating focused plasmons by noncollinear phasematching on functional gratings. Nano Lett., 5, 2144(2005).

    [71] Y. Yang, Y. Ren, M. Chen, Y. Arita, C. Rosales-Guzmán. Optical trapping with structured light: a review. Adv. Photon., 3, 034001(2021).

    [72] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348(1998).

    [73] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313(2001).

    [74] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305(2007).

    [75] J. Vickers, M. Burch, R. Vyas, S. Singh. Phase and interference properties of optical vortex beams. J. Opt. Soc. Am. A, 25, 823(2008).

    [76] H. Huang, Y. Ren, Y. Yan, N. Ahmed, Y. Yue, A. Bozovich, B. I. Erkmen, K. Birnbaum, S. Dolinar, M. Tur, A. E. Willner. Phase-shift interference-based wavefront characterization for orbital angular momentum modes. Opt. Lett., 38, 2348(2013).

    [77] M. Harris, C. A. Hill, P. R. Tapster, J. M. Vaughan. Laser modes with helical wave fronts. Phys. Rev. A, 49, 3119(1994).

    [78] L. Chen, W. Zhang, Q. Lu, X. Lin. Making and identifying optical superpositions of high orbital angular momenta. Phys. Rev. A, 88, 053831(2013).

    [79] H. I. Sztul, R. R. Alfano. Double-slit interference with Laguerre Gaussian beams. Opt. Lett., 31, 999(2006).

    [80] O. Emile, J. Emile. Young’s double-slit interference pattern from a twisted beam. Optica, 2, 1028(2015).

    [81] T. Chen, X. Lu, J. Zeng, Z. Wang, H. Zhang, C. Zhao, B. J. Hoenders, Y. Cai. Young’s double-slit experiment with a partially coherent vortex beam. Opt. Express, 28, 38106(2020).

    [82] W. Qi, R. Liu, L. Kong. Double-slit interference of single twisted photons. Chin. Opt. Lett., 18, 102601(2020).

    [83] H. Zhou, L. Shi, X. Zhang, J. Dong. Dynamic interferometry measurement of orbital angular momentum of light. Opt. Lett., 39, 6058(2014).

    [84] D. Fu, D. Chen, R. Liu, Y. Wang, H. Gao, F. Li, P. Zhang. Probing the topological charge of a vortex beam with dynamic angular double slits. Opt. Lett., 40, 788(2015).

    [85] M. Malik, S. Murugkar, J. Leach, R. W. Boyd. Measurement of the orbital-angular-momentum spectrum of fields with partial angular coherence using double-angular-slit interference. Phys. Rev. A, 86, 063806(2012).

    [86] G. C. Gregorius, M. W. Beijersbergen. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett., 101, 100801(2008).

    [87] Q. Zhao, M. Dong, Y. Bai, Y. Yang. Measuring high orbital angular momentum of vortex beams with improved multipoint interferometer. Photon. Res., 8, 745(2020).

    [88] J. Courtial, K. Dholakia, D. A. Robertson, L. Allen, M. J. Padgett. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett., 80, 3217(1998).

    [89] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, J. Courtial. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88, 257901(2002).

    [90] S. Slussarenko, V. D. Ambrosio, B. Piccirillo, L. Marrucci, E. Santamato. The polarizing sagnac interferometer: a tool for light orbital angular momentum sorting and spin-orbit photon processing. Opt. Express, 18, 27205(2010).

    [91] W. Zhang, Q. Qi, J. Zhou, L. Chen. Mimicking Faraday rotation to sort the orbital angular momentum of light. Phys. Rev. Lett., 112, 153601(2014).

    [92] J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, S. Chavez-Cerda. Unveiling a truncated optical lattice associated with a triangular aperture using light's orbital angular momentum. Phys. Rev. Lett., 105, 053904(2010).

    [93] L. E. Araujo, M. E. Anderson. Measuring vortex charge with a triangular aperture. Opt. Lett., 36, 787(2011).

    [94] Y. Liu, H. Tao, J. Pu, B. Lu. Detecting the topological charge of vortex beams using an annular triangle aperture. Opt. Laser Technol., 43, 1233(2011).

    [95] J. G. Silva, A. J. Jesus-Silva, M. A. R. C. Alencar, J. M. Hickmann, E. J. S. Fonseca. Unveiling square and triangular optical lattices: a comparative study. Opt. Lett., 39, 949(2014).

    [96] I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, D. M. Cottrell. Vortex sensing diffraction gratings. Opt. Lett., 34, 2927(2009).

    [97] K. Dai, C. Gao, L. Zhong, Q. Na, Q. Wang. Measuring OAM states of light beams with gradually-changing-period gratings. Opt. Lett., 40, 562(2015).

    [98] Y. Peng, X. Gan, P. Ju, Y. Wang, J. Zhao. Measuring topological charges of optical vortices with multi-singularity using a cylindrical lens. Chin. Phys. Lett., 32, 024201(2015).

    [99] V. V. Kotlyar, A. A. Kovalev, A. P. Porfirev. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt., 56, 4095(2017).

    [100] Z. Shuang, J. Wang. Measuringorbital angular momentum (OAM) states of vortex beams with annular gratings. Sci. Rep., 7, 40781(2017).

    [101] G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, M. J. Padgett. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [102] G. C. G. Berkhout, M. P. J. Lavery, M. J. Padgett, M. W. Beijersbergen. Measuring orbital angular momentum superpositions of light by mode transformation. Opt. Lett., 36, 1863(2011).

    [103] Y. Wen, I. Chremmos, Y. Chen, J. Zhu, Y. Zhang, S. Yu. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 120, 193904(2018).

    [104] Y. Guo, S. Zhang, M. Pu, Q. He, J. Jin, M. Xu, Y. Zhang, P. Gao, X. Luo. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light-Sci. Appl., 10, 63(2021).

    [105] G. Ruffato, M. Massari, F. Romanato. Compact sorting of optical vortices by means of diffractive transformation optics. Opt. Lett., 42, 551(2017).

    [106] G. Ruffato, M. Massari, M. Girardi, G. Parisi, M. Zontini, F. Romanato. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared. Opt. Express, 27, 24123(2019).

    [107] S. Lightman, G. Hurvitz, R. Gvishi, A. Arie. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica, 4, 605(2017).

    [108] Y. Fu, C. Min, J. Yu, Z. Xie, G. Si, X. Wang, Y. Zhang, T. Lei, J. Lin, D. Wang, H. P. Urbach, X. Yuan. Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces. Nanoscale, 11, 18303(2019).

    [109] S. Zhang, P. Huo, W. Zhu, C. Zhang, P. Chen, M. Liu, L. Chen, H. J. Lezec, A. Agrawal, Y. Lu, T. Xu. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface. Laser Photon. Rev., 14, 2000062(2020).

    [110] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436(2015).

    [111] M. I. Dedo, Z. Wang, K. Guo, Z. Guo. OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network (CNN). Opt. Commun., 456, 124696(2020).

    [112] J. Li, M. Zhang, D. Wang, S. Wu, Y. Zhan. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication. Opt. Express, 26, 10494(2018).

    [113] Z. Wang, M. I. Dedo, K. Guo, K. Zhou, F. Shen, Y. Sun, S. Liu, Z. Guo. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network. IEEE Photon. J., 11, 7903614(2019).

    [114] X. Fu, Y. Bai, Y. Yang. Measuring OAM by the hybrid scheme of interference and convolutional neural network. Opt. Eng., 60, 064109(2021).

    [115] Z. Liu, S. Yan, H. Liu, X. Chen. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2019).

    [116] K. M. Iftekharuddin, A. A. S. Awwal, M. García Vázquez, A. Márquez, M. A. Matin, E. M. Knutson, S. Lohani, O. Danaci, S. D. Huver, R. T. Glasser. Deep learning as a tool to distinguish between high orbital angular momentum optical modes. Proc. SPIE, 9970, 997013(2016).

    [117] T. Giordani, A. Suprano, E. Polino, F. Acanfora, L. Innocenti, A. Ferraro, M. Paternostro, N. Spagnolo, F. Sciarrino. Machine learning-based classification of vector vortex beams. Phys. Rev. Lett., 124, 160401(2020).

    [118] P. Genevet, J. Lin, M. A. Kats, F. Capasso. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun., 3, 1278(2012).

    [119] S. T. Mei, K. Huang, H. Liu, F. Qin, M. Q. Mehmood, Z. Xu, M. Hong, D. Zhang, J. Teng, A. Dannera, C. Qiu. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits. Nanoscale, 8, 2227(2016).

    [120] J. Chen, T. Li, S. Wang, S. Zhu. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett., 17, 5051(2017).

    [121] J. Chen, X. Chen, T. Li, S. Zhu. On-chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photon. Rev., 12, 1700331(2018).

    [122] F. Feng, G. Si, C. Min, X. Yuan, M. Somekh. On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light-Sci. Appl., 9, 95(2020).

    [123] M. Dong, C. Zhao, Y. Cai, Y. Yang. Partially coherent vortex beams: fundamentals and applications. Sci. China Phys. Mech., 64, 224201(2021).

    [124] D. M. Fatkhiev, M. A. Butt, E. P. Grakhova, R. V. Kutluyarov, I. V. Stepanov, N. L. Kazanskiy, S. N. Khonina, V. S. Lyubopytov, A. K. Sultanov. Recent advances in generation and detection of orbital angular momentum optical beams: a review. Sensors, 21, 4988(2021).

    CLP Journals

    [1] Peijun Liu, Yanan Fu, Xi Xie, Changjun Min, Yuquan Zhang, Xiaocong Yuan. High-efficiency monolayer metallic metasurface for modulation of orbital angular momentum[J]. Chinese Optics Letters, 2022, 20(12): 123601

    Data from CrossRef

    [1] Xin Wang, Yuan Sun, Liang Liu. Characterization of isotropic laser cooling for application in quantum sensing. Optics Express, 29, 43435(2021).

    Yihua Bai, Haoran Lv, Xin Fu, Yuanjie Yang. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601
    Download Citation