• Photonics Research
  • Vol. 7, Issue 11, 1287 (2019)
Pan Wang1, Shunyu Yao1, Philippe Grelu2, Xiaosheng Xiao1, and Changxi Yang1、*
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
  • 2Laboratoire ICB UMR 6303 CNRS, Université Bourgogne Franche-Comté, F-21078 Dijon Cedex, France
  • show less
    DOI: 10.1364/PRJ.7.001287 Cite this Article Set citation alerts
    Pan Wang, Shunyu Yao, Philippe Grelu, Xiaosheng Xiao, Changxi Yang. Pattern formation in 2-μm Tm Mamyshev oscillators associated with the dissipative Faraday instability[J]. Photonics Research, 2019, 7(11): 1287 Copy Citation Text show less
    References

    [1] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [2] A. Martinez, Z. Sun. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics, 7, 842-845(2013).

    [3] B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, C. Yang. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm. IEEE J. Sel. Top. Quantum Electron., 20, 1100705(2014).

    [4] W. Liu, L. Pang, H. Han, Z. Shen, M. Lei, H. Teng, Z. Wei. Dark solitons in WS2 erbium-doped fiber lasers. Photon. Res., 4, 111-114(2016).

    [5] K. Zhang, M. Feng, Y. Ren, F. Liu, X. Chen, J. Yang, X. Yan, F. Song, J. Tian. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber. Photon. Res., 6, 893-899(2018).

    [6] V. J. Matsas, T. P. Newson, D. J. Richardson, D. N. Payne. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation. Electron. Lett., 28, 1391-1393(1992).

    [7] A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, M. Erkintalo. Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett., 39, 319-322(2014).

    [8] P. V. Mamyshev. All-optical data regeneration based on self-phase modulation effect. 24th European Conference on Optical Communication, 475-476(1998).

    [9] K. Sun, M. Rochette, L. R. Chen. Output characterization of a self-pulsating and aperiodic optical fiber source based on cascaded regeneration. Opt. Express, 17, 10419-10432(2009).

    [10] S. Pitois, C. Finot, L. Provost, D. J. Richardson. Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators. J. Opt. Soc. Am. B, 25, 1537-1547(2008).

    [11] M. Rochette, L. R. Chen, K. Sun, J. Hernández-Cordero. Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering. IEEE Photon. Technol. Lett., 20, 1497-1499(2008).

    [12] T. North, A. Al-kadry, M. Rochette. Analysis of self-pulsating sources based on cascaded regeneration and soliton self-frequency shifting. IEEE J. Sel. Top. Quantum Electron., 20, 612-618(2014).

    [13] T. North, M. Rochette. Regenerative self-pulsating sources of large bandwidths. Opt. Lett., 39, 174-177(2014).

    [14] K. Regelskis, J. Želudevičius, K. Viskontas, G. Račiukaitis. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering. Opt. Lett., 40, 5255-5258(2015).

    [15] Z. Liu, Z. M. Ziegler, L. G. Wright, F. W. Wise. Megawatt peak power from a Mamyshev oscillator. Optica, 4, 649-654(2017).

    [16] W. Fu, L. G. Wright, F. W. Wise. High-power femtosecond pulses without a modelocked laser. Optica, 4, 831-834(2017).

    [17] W. Fu, L. G. Wright, P. Sidorenko, S. Backus, F. W. Wise. Several new directions for ultrafast fiber lasers. Opt. Express, 26, 9432-9463(2018).

    [18] P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, F. W. Wise. Self-seeded, multi-megawatt, Mamyshev oscillator. Opt. Lett., 43, 2672-2675(2018).

    [19] W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, M. Hu. Femtosecond Mamyshev oscillator with 10-MW-level peak power. Optica, 6, 194-197(2019).

    [20] P. Grelu, N. Akhmediev. Dissipative solitons for mode-locked lasers. Nat. Photonics, 6, 84-92(2012).

    [21] P. Franco, F. Fontana, I. Cristiani, M. Midrio, M. Romagnoli. Self-induced modulational-instability laser. Opt. Lett., 20, 2009-2011(1995).

    [22] C. J. S. de Matos, D. A. Chestnut, J. R. Taylor. Low-threshold self-induced modulation instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train. Opt. Lett., 27, 915-917(2002).

    [23] R. E. Kennedy, S. V. Popov, J. R. Taylor. Ytterbium gain band self-induced modulation instability laser. Opt. Lett., 31, 167-168(2006).

    [24] S. Coen, M. Haelterman. Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulation instability in a passive fiber cavity. Opt. Lett., 26, 39-41(2001).

    [25] F. Copie, M. Conforti, A. Kudlinski, A. Mussot. Competing Turing and Faraday instabilities in longitudinally modulated passive resonators. Phys. Rev. Lett., 116, 143901(2016).

    [26] F. Copie, M. Conforti, A. Kudlinski, S. Trillo, A. Mussot. Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity. Opt. Lett., 42, 435-438(2017).

    [27] N. J. Smith, N. J. Doran. Modulation instabilities in fibers with periodic dispersion management. Opt. Lett., 21, 570-572(1996).

    [28] K. Staliunas, C. Hang, V. V. Konotop. Parametric patterns in optical fiber ring nonlinear resonators. Phys. Rev. A, 88, 023846(2013).

    [29] N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, S. K. Turitsyn. Mode-locking via dissipative Faraday instability. Nat. Commun., 7, 12441(2016).

    [30] A. M. Perego, S. K. Turitsyn, K. Staliunas. Gain through losses in nonlinear optics. Light Sci. Appl., 7, 43(2018).

    [31] A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, K. Staliunas. Pattern generation by dissipative parametric instability. Phys. Rev. Lett., 116, 028701(2016).

    [32] A. M. Perego. High-repetition-rate, multi-pulse all-normal-dispersion fiber laser. Opt. Lett., 42, 3574-3577(2017).

    [33] A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, S. Wabnitz. Self-induced Faraday instability laser. Phys. Rev. Lett., 120, 213902(2018).

    [34] P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, C. Yang. Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber. IEEE J. Sel. Top. Quantum Electron., 24, 1800207(2018).

    [35] C. Bao, X. Xiao, C. Yang. Spectral compression of a dispersion-managed mode-locked Tm:fiber laser at 1.9 μm. IEEE Photon. Technol. Lett., 28, 497-500(2016).

    [36] F. Ilday, J. Buckley, W. Clark, F. Wise. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett., 92, 213902(2004).

    [37] J. Peng, N. Tarasov, S. Sugavanam, D. Churkin. Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser. Opt. Express, 24, 24256-24263(2016).

    [38] C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, N. Akhmediev. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett., 108, 233901(2012).

    [39] M. Erkintalo, G. Genty, J. M. Dudley. Giant dispersive wave generation through soliton collision. Opt. Lett., 35, 658-660(2010).

    [40] D. R. Solli, C. Ropers, P. Koonath, B. Jalali. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [41] K. Hammani, C. Finot, G. Millot. Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave. Opt. Lett., 34, 1138-1140(2009).

    [42] A. Coillet, J. Dudley, G. Genty, L. Larger, Y. K. Chembo. Optical rogue waves in whispering-gallery-mode resonators. Phys. Rev. A, 89, 013835(2014).

    [43] J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev. Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Phys. Rev. E, 84, 016604(2011).

    CLP Journals

    [1] Pan Wang, Jiangyong He, Xiaosheng Xiao, Zhi Wang, Yange Liu. Sub-terahertz-repetition-rate frequency comb generated by filter-induced instabilities in passive driven fiber resonators[J]. Photonics Research, 2022, 10(2): 465

    Pan Wang, Shunyu Yao, Philippe Grelu, Xiaosheng Xiao, Changxi Yang. Pattern formation in 2-μm Tm Mamyshev oscillators associated with the dissipative Faraday instability[J]. Photonics Research, 2019, 7(11): 1287
    Download Citation