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We investigate numerically the pattern formation in 2-μm thulium-doped Mamyshev fiber oscillators, associated
with the dissipative Faraday instability. The dispersion-managed fiber ring oscillator is designed with commercial
fibers, allowing the dynamics for a wide range of average dispersion regimes to be studied, from normal to near-
zero cavity dispersion where the Benjamin–Feir instability remains inhibited. For the first time in the 2-μm
spectral window, the formation of highly coherent periodic patterns is demonstrated numerically with rates
up to ∼100 GHz. In addition, irregular patterns are also investigated, revealing the generation of rogue waves
via nonlinear collision processes. Our investigations have potential applications for the generation of multigi-
gahertz frequency combs. They also shed new light on the dissipative Faraday instability mechanisms in the area
of nonlinear optical cavity dynamics. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.001287

1. INTRODUCTION

Owing to the advantages of compactness, alignment-free, and
high pulse quality, passively mode-locked fiber lasers have been
extensively investigated in the past two decades. Ultrafast fiber
lasers benefit numerous areas such as fiber communication
engineering, micromachining, and biomedical imaging, as well
as provide an excellent platform for investigating ultrafast non-
linear dynamics. Various techniques are generally implemented
to achieve passive mode locking in fiber lasers, utilizing the
nonlinear optical response of saturable absorbers. This relies
on engineered materials such as semiconductor saturable
absorber mirrors (SESAMs) [1], single-wall carbon nanotubes
(SWNTs) [2], graphene [3], transition-metal dichalcogenides
(TMDs) [4,5], or those based on nonlinear interference, for
instance with the nonlinear polarization evolution (NPE) mode
locking [6] or with the use of a nonlinear amplifying loop
mirror (NALM) [7].

Recently, Mamyshev oscillators (MOs) have attracted
increasing research interests as a promising alternative to the
passive mode locking of fiber lasers. The concept of these os-
cillators originates from the scheme of cascaded reshaping and
reamplification (2R) regenerators first proposed by Mamyshev
in optical fiber transmission systems [8]. The pulse-shaping
approach is based on self-phase-modulation (SPM)-induced

spectral broadening, followed by offset filtering, providing a
nonlinear power transfer function similar to that of a saturable
absorber [9]. Mamyshev oscillators are constructed from a pair
of spectrally offset 2R regenerators in a closed loop [10,11],
which regenerate circulating pulses twice per cavity roundtrip.
Up to now, investigations of Mamyshev oscillators have re-
vealed their wide potential for engineering applications, such
as signal buffering [11], random number generation [9,12],
and high-energy short-pulse generation [13–19]. From the
theoretical standpoint, stable pulsed regimes in Mamyshev os-
cillators are possible in the presence of a stable dynamical at-
tractor. The latter results from a composite balance among the
effects of nonlinearity, dispersion, gain, and loss, similar to the
case of a mode-locked laser [20]. However, in contrast with
mode-locked lasers, the variety of complex dynamics of
Mamyshev oscillators has not been extensively investigated.
The present article aims at filling this gap, even partially, with
the help of numerical simulations.

Fundamentally, an oscillator based on true optical regener-
ators will hardly be a self-starting one. Indeed, the function of
an optical regenerator is to regenerate “0”s as well as “1”s, so
that starting from a low intensity level will not lead to circulat-
ing pulses. By essence, regeneration should not create patterns
but just maintain the integrity of a message. Consequently,
pulsed sources based on Mamyshev oscillators usually require
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pulse injection, to get above the “0” and enter the “1” attracting
state. Nevertheless, by exploring the range of the cavity param-
eters, it has been shown that modulation instability (MI) proc-
esses could take place within oscillators sufficiently close to the
definition of a Mamyshev oscillator. MI is a ubiquitous mecha-
nism in nonlinear optical systems, leading to the exponential
growth of a periodic modulation of a homogeneous spatiotem-
poral background solution. Several classes of MI have been in-
vestigated in fiber resonators such as the Benjamin–Feir
instability (BFI) [21–23], the Turing instability (TI) [24–26],
and the Faraday instability (FI) [25–28]. Very recently, the dis-
sipative Faraday instability (DFI), as a novel type of MI,
has been proposed for high-repetition-rate harmonic mode
locking [29–33]. In the regime of the DFI, the symmetry
breaking of the homogeneous solution is induced by the peri-
odic spectral losses arranged in a zigzag way, leading to the spec-
tral sideband generation and ultimately the pattern formation
[29–31]. The application of the DFI shows an interesting po-
tential for the generation of multigigahertz frequency comb
generation [29–33].

Interestingly, the Mamyshev oscillators, with periodic offset
spectral filtering in an alternating fashion, provide a promising
platform for the investigation of the DFI physical mechanisms
in fiber optics. Echoing the first experimental demonstration in
a linear Raman fiber oscillator operating at the waveband of
1.5 μm [29], the high-repetition-rate harmonic mode locking,
induced by the DFI mechanism, has also been theoretically in-
vestigated in a 1.0-μm waveband all-normal-dispersion (ANDi)
fiber oscillator [32]. However, note that, there has not been to
date any experimental or theoretical investigation of the DFI
pattern formation in Mamyshev oscillators operating at the
2-μm waveband. Considering the potential applications of
2-μm laser sources in the midinfrared (MIR) molecular
spectroscopy, medicine, and telecommunication networks,
it is beneficial to expand the investigation of this novel DFI
mechanism to all the three major fiber laser operation wave-
lengths from 1.0 to 2.0 μm.

In the present paper, we report on the first numerical inves-
tigations of the DFI pattern formation in 2-μm thulium-doped
Mamyshev fiber oscillators, conducted with realistic parameters
involving commercially available single-mode optical fibers.
Note that, in the earlier investigations of the DFI pattern for-
mation [29,32], fibers with large normal group velocity
dispersion (GVD) are implemented to inhibit the initiation
of the BFI. Given that standard silica-based optical fibers gen-
erally feature a large anomalous chromatic dispersion at the
wavelength around 2 μm, a specialty dispersion-compensation
fiber with a relatively high normal GVD is utilized in our
investigations. Under the dispersion-managed regimes, with
large net normal or near-zero cavity dispersion, up to
∼100 GHz ultrahigh-repetition-rate harmonic mode locking
is demonstrated. Moreover, the coherence properties of the
regular and irregular patterns associated with the DFI are also
investigated and reveal the generation of optical rogue waves
(RWs) in the irregular patterns via nonlinear pulse collision.
Our investigations might benefit the further understanding
of this novel DFI mechanism in laser physics and nonlinear
science.

2. THEORETICAL MODEL

The scheme diagram of the 2-μm Tm fiber-based Mamyshev
oscillator is shown in Fig. 1. The unidirectional ring cavity is
made up of two Tm-doped gain fiber sections alternated with
two passive fiber sections. The pulse propagation in the
Mamyshev oscillators is modeled with a parameter-managed
model, which includes lumped spectral filters as well as the gen-
eralized nonlinear Schrödinger (NLS) equation [32,34] for
propagation in commercially available optical fibers:
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where A�z, t� is the electric field slowly varying envelope, z is
the propagating coordinate, and t is the time in a frame of refer-
ence moving with the group velocity. β2 is the GVD, and γ is
the nonlinear Kerr coefficient. The gain coefficient g�z� of the
Tm-doped fibers, whose bandwidth is Ωg , is defined as
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where g0 is the small-signal gain, and E sat is the saturation
energy. In our simulations, the highly doped SM-TSF-5/125
and UHNA4 fibers from Nufern are chosen as the Tm-doped
gain fibers and the normal dispersion passive fibers, respec-
tively [34,35].

The functions of the offset spectral filters are described by
multiplication of the electric field by the super-Gaussian trans-
mission profiles in the frequency domain. The frequency de-
tuning between the spectral filters is described as ΔΩ, while
the 3-dB spectral filter bandwidth is represented as σ. The
output coupling ratios of the optical couplers are described
as q1 and q2.

The following parameters are used for the following simu-
lations: LTDF1 � LTDF2 � 0.3 m, γTDF � 2.8 W−1 · km−1,
β2,TDF � −12 ps2∕km, LNDF1 � LNDF2 � 2.4 m, γNDF �
5.3 W−1 · km−1, β2,NDF � 93 ps2∕km, Ωg � 80 nm, q1 �
q2 � 0.1, and σ � 4 nm. The bandwidth value of the TDF

passive fiber1

passive fiber2

OC1OC2

TDF1

TDF2

Fig. 1. Schematic diagram of the 2-μm fiber ring cavity in a
Mamyshev oscillator configuration. OC, optical coupler; TDF,
Tm-doped gain fiber; filter 1, longer-wavelength super-Gaussian spec-
tral filter; filter 2, shorter-wavelength super-Gaussian spectral filter;
passive fiber, the commercial normal dispersion fiber (NDF).
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matches well with the parameters of the commercial Tm-doped
fibers as well as our previous experience on numerical investi-
gations. For this central parameter case, the total GVD
amounts to 0.439 ps2. The small-signal gain g0 and the satu-
ration energy E sat are adjusted as the control parameters to de-
scribe the energy pumped into the cavity.

3. RESULTS AND DISCUSSION

Numerical simulations are performed utilizing the standard
split-step Fourier method. Firstly, we injected a small
Gaussian-shaped pulse as the initial condition, to speed up
the convergence of the algorithm towards the stationary oper-
ation state, which is an attracting state. By appropriately adjust-
ing the oscillator parameters of the cavity gain and the
frequency detuning between the filters, stable single pulse op-
eration can be achieved, as depicted in Fig. 2. The temporal
evolution during per cavity roundtrip is described in Fig. 2(a).
The ∼2 ps Gaussian-shaped pulse, after being strongly filtered
by the shorter-wavelength filter, experiences a remarkable in-
tensity increase during the propagation in the short section
of the highly doped TDFs, reaching tens of kilowatts before
entering the normal dispersion passive fiber. Owing to the high
dispersion value of the passive fiber, the pulse broadens rapidly
in the temporal domain and its intensity decreases without suf-
fering wave breaking. However, the pulse shape deviates from
the Gaussian shape with part of the pulse energy transformed
into increasing temporal oscillating wings, before the interac-
tion with the longer-wavelength filter takes place. The pulse is
reshaped after propagation through the longer-wavelength
spectral filter, continuing another temporal and spectral evolu-
tion until going through the shorter-wavelength filter again.
The pulse evolution dynamics indicates that the spectral filters
play a key role in the pulse shaping. In this paper, the temporal

and spectral evolutions over hundreds of cavity roundtrips are
taken at the output of OC1. We also investigate the temporal
and spectral evolutions by roundtrips at different positions in
the oscillators, exhibiting similar tendency to those at the out-
put of OC1.

In our simulations, the number of pulses per roundtrip
can be increased by using a higher pump power, similar to
the earlier reports in the erbium-doped and ytterbium-doped
Mamyshev oscillators [9,14]. Interestingly, Fig. 3 shows the
temporal evolution of the soliton pair operation, for the same
frequency detuning between the filters, but at higher cavity
gain. As illustrated in Fig. 3(a), the two pulses of the soliton
pair experience the same temporal evolution, similar to the sit-
uation of the single pulse operation. Figure 3(b) depicts the
pulse shape after the longer-wavelength spectral filter, indicat-
ing that the bound solitons have the same intensity and pulse
duration of 2.1 ps, fitted by the Gaussian profile, and the pulse
separation is 14.5 ps. The spectrum in Fig. 3(c) exhibits a regu-
lar high-contrast modulation period of 0.89 nm, which coin-
cides with the pulse separation. The phase relationship is also
calculated, with a phase difference of 3.31 rad, indicating the
out-of-phase condition. Because of the significant pulse broad-
ening, the overlap of the adjacent pulse wings is observed after
propagation through the normal dispersion passive fibers. After
the filtering effect of the spectral filters, the soliton pairs are
reshaped, with the oscillating temporal wings inhibited. The
long-term pulse evolution is also measured, revealing the fea-
ture of stationary soliton pair operation with constant pulse
separation and phase relationship. Note that, with certain dif-
ferent initial conditions, the same soliton molecule operation
can be achieved over hundreds of cavity roundtrips, which is
related to the concept of fixed-point soliton molecule attractor
in the dissipative systems [20]. We have not yet observed sol-
iton molecules with more complex self-organizations such as

Fig. 2. Spatiotemporal dynamics of single pulse operation: (a) tem-
poral spectral evolution during per cavity roundtrip. A, B, C, D, E, and
F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive
fiber2, and filter2 + OC2; (b) temporal (blue) and frequency chirping
(red) profiles after the interaction with the longer-wavelength filter;
(c) spectral pulse profile (blue) after the longer-wavelength filter
(red); (d) spectral evolution over 300 roundtrips at the output of
OC1 (color scale for the optical intensity, in dB). The cavity param-
eters are g0 � 12.8, E sat � 19.4 nJ, andΔΩ � 7.0 nm.

Fig. 3. Spatiotemporal dynamics of soliton pair molecule operation:
(a) temporal evolution during per cavity roundtrip. A, B, C, D, E, and
F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive
fiber2, and filter2 + OC2; (b) temporal and frequency chirping profiles
after the longer-wavelength filter; (c) spectral profiles after the longer-
wavelength filter; (d) spectral evolution over 300 roundtrips at the
output of OC1. The remaining parameters are g0 � 16.2,
E sat � 19.4 nJ, andΔΩ � 7.0 nm.
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soliton triplets or quartets, but we believe there is no funda-
mental reason why they should not be observed, following the
analogy with the ultrafast fiber laser dynamics. Numerically, it
only requires more precision and computing time to validate
the existence of such structures, in addition to the selection
of appropriate parameter settings.

By further decreasing the frequency detuning between the
spectral filters with fixed cavity gain, the number of pulses
propagating in the oscillator increases, forming a random pulse
train operation [11,32]. Although the pulses propagating in the
cavity appear randomly in time, they maintain their relative
position and keep a stable profile over the cavity roundtrips,
as depicted in Fig. 4(a), showing the potential for random num-
ber generation [12]. The pulses experience a periodic intensity
increase in the TDFs and temporal broadening in the passive
fibers, twice per cavity roundtrip. Note that, with the increasing
number of pulses involved in such a multipulse regime, the
pulse intensity decreases and the temporal oscillating wings
of the pulses are inhibited within a certain degree, showing
the link between oscillating pulse wings and the accumulated
nonlinearity in the passive fibers. As shown in Figs. 4(c) and
4(d), the spectral evolution reflects a reduced coherence owing
to a random pulse train with nonstationary and arbitrary phase
relationships between the adjacent pulses.

The steady-state regimes are significantly affected by the fre-
quency detuning between the filters. Regular patterns form via
the DFI mechanism when the frequency detuning is decreased
to a certain threshold [31,32]. An example of regular pattern
formation is illustrated in Figs. 5 and 6. The temporal and spec-
tral evolution over cavity roundtrips is measured, revealing the
ultrahigh harmonic mode locking operation. The temporal
period of the pulse train is 11.1 ps, which corresponds to a
repetition rate of 90 GHz, equivalent to the ∼2.44 × 103
cavity harmonic, considering the fundamental frequency of
36.7 MHz. The single pulse profiles before and after the spec-
tral filter are also analyzed, as depicted in Figs. 6(a) and 6(b).

After the propagation in the passive fibers, the pulse profile ul-
timately reaches a parabolic shape, attributed to the self-similar
evolution in the normally dispersive fiber [36]. After the inter-
action with the spectral filters, the pulse profile is reshaped into
a Gaussian shape. It is worth noting that, although the DFI
pattern formation has been shown for the 1.5-μm Raman fiber
oscillator [29] and the 1.0-μm ANDi fiber oscillator [32], the
coherence was limited by a large timing jitter in the systems. As
pointed out in Ref. [32], such a timing jitter was induced by a
combination of noise and wave breaking in the ultralong nor-
mal dispersion passive fibers with a length of several kilometers.
In our simulations, as shown in Figs. 5 and 6, a stationary spec-
trum with high-contrast modulation is obtained, with a period

Fig. 4. Spatiotemporal dynamics of random pulse train operation:
(a) temporal and (c) spectral evolution over 300 roundtrips at the out-
put of OC1; (b) temporal and (d) spectral evolution during per cavity
roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1,
filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remain-
ing parameters are g0 � 16.2, E sat � 19.4 nJ, andΔΩ � 5.4 nm.

Fig. 5. Spatiotemporal dynamics of regular pattern formation:
(a) temporal and (c) spectral evolution over 300 roundtrips at the out-
put of OC1; (b) temporal and (d) spectral evolution during per cavity
roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1,
filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remain-
ing parameters are g0 � 16.2, E sat � 19.4 nJ, andΔΩ � 4.6 nm.

Fig. 6. Spatiotemporal profiles of regular pattern formation: single
pulse temporal profiles (a) before and (b) after the interaction with the
longer-wavelength filter; (c) pulse train temporal and phase profiles
after the longer-wavelength filter; (d) spectral profile after the longer-
wavelength filter.
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of 90 GHz between the adjacent spectral comb lines. We con-
clude that the high spectral coherence in our investigations is
attributed to the cavity structure improvement by using a rel-
atively short cavity length of only several meters, showing the
potential for highly coherent ultra-high harmonic mode locking
in the future experimental research. This is facilitated at the
wavelength of 2 μm, owing to the larger gain bandwidth of
TDF and high normal dispersion of the commercial normal-
dispersion fibers.

The temporal and spectral evolution during one cavity
roundtrip is displayed in Figs. 5(b) and 5(d). Notably, during
the propagation in the normal dispersion passive fibers, due to
the nonlinear Kerr effect, the envelope of the spectrum broad-
ens. Consequently, the number of the spectral comb lines, in-
volved in the harmonic mode locking pulse train, dramatically
increases during the propagation, where the pulse energy is
gradually spread over the spectral comb lines in the spectral
wings. The spectral coherence is maintained through every cav-
ity roundtrip, attributed to the inherent nature of the coherent
phase coupling between each spectral comb line and the adja-
cent lines separated by the DFI frequency [29]. The phase re-
lationship of the pulse train is also investigated, revealing that
the phase difference is constant between the adjacent pulses,
further confirming the temporal coherence of the harmonic
mode locking. In our case, the repetition rate is mainly limited
by the high pulse intensity of hundreds of watts, which is two
orders of magnitude larger than that of Ref. [32]. By extension,
it is therefore conceivable that further cavity parameter scaling
will allow the generation of repetition rates well beyond
100 GHz. The large gain bandwidth of TDF is also a good
asset for this prospect.

According to Refs. [29,32], the repetition rate of the regular
patterns is in inverse relationship with the pulse intensity, in-
fluenced by complex parameter settings of the pump power and
filter frequency detuning. Thus, the preciseness is limited in
drawing the curves of the repetition rate versus a single
variable of pump power or frequency detuning.

Our scheme of ∼100 GHz highly coherent ultrahigh-
repetition-rate harmonic generation in Mamyshev oscillators
provides a feasible alternative to the general methods of multi-
gigahertz frequency comb generation in microresonators or
inserting a Mach–Zehnder interferometer in the fiber cavity.

The stability of the DFI-induced pattern formation is sig-
nificantly influenced by the frequency detuning between the
filters. Irregular pattern generation can be observed by decreas-
ing the frequency detuning under a certain threshold, with the
repeated processes of pulse formation and annihilation during
successive cavity roundtrips. Figures 7 and 8 depict two cases of
the temporal and spectral evolution dynamics of the irregular
patterns with different frequency detuning values. As discussed
in Ref. [31], a weaker frequency detuning is insufficient to sup-
press the noisy background, which grows between pulses, lead-
ing to the emergence of nonlinear collision processes. Note
that, the nonlinear collision processes become much more in-
tense with smaller frequency detuning, where larger numbers of
noisy waves are involved, significantly degrading the spectral
coherence of the patterns, as shown in Figs. 7 and 8. The in-
tensity fluctuation and temporal overlap are also observed

among the adjacent pulses propagating per cavity roundtrip,
as illustrated in Figs. 7(b) and 8(b). The interesting presence
of Faraday pattern “islands” on a “sea” of spatiotemporally cha-
otic turbulence, as described in Ref. [33], is also observed. To
counter the stabilizing effect of the gain bandwidth, which was
noted in Ref. [33], a smaller detuning between filters can be
used to enter the turbulent regime.

Interestingly, we found that the effect of nonlinear collision
among the multipulse regimes could lead to the generation of
optical RWs. In our investigations, an example of the temporal
and phase profiles of the RWs’ generation is depicted in Fig. 9.

Fig. 7. Spatiotemporal dynamics of irregular pattern formation:
(a) temporal and (c) spectral evolution over 300 roundtrips at the out-
put of OC1; (b) temporal and (d) spectral evolution during per cavity
roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1,
filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remain-
ing parameters are g0 � 16.2, E sat � 19.4 nJ, andΔΩ � 4.2 nm.

Fig. 8. Spatiotemporal dynamics of irregular pattern formation:
(a) temporal and (c) spectral evolution over 300 roundtrips at the out-
put of OC1; (b) temporal and (d) spectral evolution during per cavity
roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1,
filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remain-
ing parameters are g0 � 16.2, E sat � 19.4 nJ, andΔΩ � 2.8 nm.
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The phenomena of optical RWs have drawn widespread re-
search interests in nonlinear physics in recent years, leading to
an outburst of publications realized in various optical systems,
such as ultrafast fiber lasers [34,37,38], supercontinuum gen-
eration [39,40], parametric processes [41], and microresonators
[42]. The significant wave height (SWH) is defined as the mean
amplitude of the highest third of the waves, and the wave events
higher than twice the SWH qualify as RWs [40]. In our inves-
tigations, the statistical properties of the pulse intensity distri-
bution are investigated to give more insight into the nonlinear
collision dynamics in the irregular patterns.

Figure 10 illustrates the influence of the frequency detuning
between the filters on RWs’ generation. The pulse intensity dis-
tributions of different regimes, before the OC1, are depicted.
Figure 10(a) shows the statistics distribution of the harmonic
mode locking, associated with the regular pattern formation.
The pulse intensity distributes around the root mean square
(RMS) of 126 W, revealing high stability of the pulse trains.
We further calculate the statistical properties of the irregular
pattern regimes. The small-intensity events below the threshold
of 50 W are removed to avoid the divergence of the probability
for small amplitude pulses, in relationship with the cutoff
applied in any experiment [34,43].

We accumulate the events to form the intensity distribu-
tion histograms. As depicted in Fig. 10, with decreasing
ΔΩ, the intensity fluctuation increases, leading to the long-
tailed L-shaped distributions. As illustrated in Figs. 10(d)
and 10(e), in the statistics distributions, the high-intensity
events exhibit much higher probability of occurrence than ex-
pected from standard Gaussian or Rayleigh distributions. The
probability density function (PDF) and number of events ver-
sus the value of ΔΩ are also calculated to give quantitative
analysis of the RWs’ generation. The simulation results are
shown in Fig. 10(f ). The number of events per 500 roundtrips
increases with the decrease of ΔΩ value, indicating the ineffi-
cient suppression of the noisy background for a weak frequency
detuning between the filters. The PDF of RWs experiences a

remarkable increase with the growth of the collision events,
demonstrating that the generation of RWs is here associated
with the occurrence probability of nonlinear pulse collisions.
In our simulations, the statistics of the RWs at OC1 and
OC2 are the same.

To further confirm that the DFI pattern formation remains
a general property of the TmMamyshev oscillators operating at
the 2-μm waveband, we conduct the numerical investigations
in a second fiber ring setup. We use the same normal dispersion
passive fibers, while the Tm-doped gain fibers are changed to
the lightly doped CorActive TH512 fibers, with the dispersion
value of −73 ps2∕km and the nonlinear Kerr coefficient of
1.1 W−1 · km−1 [35]. Both Tm-doped fiber sections are
chosen to be 1.5 m long. The length of both passive fiber sec-
tions is chosen to be 1.5 m, yielding a total cavity GVD close to
zero, at 0.06 ps2. The fundamental repetition rate is 33 MHz.
The spectral filter profiles and the output couplers remain the
same. Single pulse, soliton molecules, and random pulse train
operations can be successively obtained by appropriately adjust-
ing the cavity parameters of the active fiber gain and filter fre-
quency detuning.

With the proper cavity parameter settings, the regular pat-
tern formation is achieved, illustrated in Figs. 11 and 12.
The repetition rate is calculated to be 107.5 GHz, corre-
sponding to the ∼3.25 × 103 harmonic mode locking. The
spectrum exhibits a high-contrast modulation, with the period
of 107.5 GHz between the adjacent spectral comb lines.

Fig. 9. Temporal and phase profiles of the RWs’ generation after
the longer-wavelength filter. The remaining parameters are
g0 � 16.2, E sat � 19.4 nJ, andΔΩ � 2.0 nm.

Fig. 10. Influence of the frequency detuning between the filters on
RWs generation: histogram on log scale showing the statistics distri-
bution of the pulse intensity for ΔΩ values of (a) 4.6 nm; (b) 5.4 nm;
(c) 4.2 nm; (d) 2.8 nm; and (e) 2.0 nm; (f ) PDF and number of events
versus the frequency detuning between the filters. The remaining
parameters are g0 � 16.2 and E sat � 19.4 nJ.
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The temporal and spectral evolution during one cavity round-
trip is also measured, revealing similar dynamics to that of the
highly doped Tm Mamyshev oscillator. The pulses of the har-
monic mode locking have a Gaussian shape after the interaction
with one spectral filter and gradually evolve into parabolic
shape upon propagation in the oscillator until they interact
with the next filter. The envelope of the spectrum broadens
significantly through every cavity roundtrip, with the pulse
energy transformed into the spectral comb lines in the spec-
tral wings. The temporal coherence results from the fixed
phase relationship among adjacent pulses. Interestingly, our

numerical investigations show that, with such dispersion-
managed cavity with near-zero total GVD, the BFI remains
absent, while the DFI generates the pattern. This complements
the prior results in Refs. [29,32], where large total GVD was
implemented for DFI pattern formation.

Similar to the case of the large-normal dispersion fiber ring
oscillator, the irregular pattern can be obtained by further de-
creasing the frequency detuning of the filters under the same
cavity gain parameters. Two cases of the temporal and spectral
evolution dynamics of the irregular patterns are depicted in
Fig. 13. With the lower value of frequency detuning, the non-
linear collision processes become much more frequent with
larger numbers of noisy waves involved, confirming the role
of frequency detuning in noise background suppression.
Compared to the regular pattern, the spectral coherence is de-
graded with the emergence of the noisy waves. The intense
nonlinear collision processes lead to extreme wave generation,
which is further demonstrated by calculating the statistics dis-
tributions of the pulse intensity of the irregular pattern regimes.
The intensity distribution histograms on log scale are illustrated
in Fig. 14. Analogous to the results in the large-normal
dispersion (highly doped) oscillator, with smaller frequency de-
tuning, the histograms exhibit more significant deviation from
the Gaussian or Rayleigh distributions, resulting in long-tailed
L-shaped distributions. The proportion of RWs increases with
the decrease of the filter frequency detuning ΔΩ. Meanwhile,
the event number involved in the nonlinear collision processes
increases with the decrease of ΔΩ value, as in the large-normal
dispersion (highly doped) oscillator. For the first time, our sim-
ulations predict the occurrence of RWs in 2-μmMamyshev os-
cillators and link these RWs with the nonlinear pulse collision
processes.

The DFI harmonic pattern formation is not achieved in
the anomalous dispersion regime, due to the initiation of
the BFI.

Fig. 11. Spatiotemporal dynamics of regular pattern formation in
the near-zero dispersion fiber ring setup (see text): (a) temporal and
(c) spectral evolution over 300 roundtrips at the output of OC1;
(b) temporal and (d) spectral evolution during per cavity roundtrip.
A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1
+OC1, TDF2, passive fiber2, and filter2+OC2. The remaining
parameters are g0 � 16.8, E sat � 16.4 nJ, andΔΩ � 5.4 nm.

Fig. 12. Spatiotemporal profiles of regular pattern formation: single
pulse temporal profiles (a) before and (b) after the interaction with the
longer-wavelength filter; (c) pulse train temporal and phase profiles
after the longer-wavelength filter; (d) spectral profile after the
longer-wavelength filter.

Fig. 13. Spatiotemporal dynamics of irregular pattern formation:
(a) temporal and (b) spectral evolution over 300 roundtrips at the
output of OC1 (the remaining parameters are g0 � 16.8, E sat �
16.4 nJ, andΔΩ � 3.6 nm); (b) temporal and (d) spectral evolution
over 300 roundtrips at the output of OC1 (the remaining parameters
are g0 � 16.8, E sat � 16.4 nJ, andΔΩ � 2.4 nm).
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4. SUMMARY

In summary, we demonstrate numerically the DFI pattern for-
mation in 2-μm Tm Mamyshev oscillators by employing the
realistic parameters of commercially available optical fibers.
The specialty high-normal GVD passive fibers are utilized to
compensate the large anomalous chromatic dispersion of the
gain fibers. Both highly doped and lightly doped Tm fibers
are exploited to form the dispersion-managed regimes, with ei-
ther large net-normal or near-zero cavity dispersion, inhibiting
the initiation of the BFI. The prediction of up to ∼100 GHz
highly coherent ultrahigh-repetition-rate harmonic mode lock-
ing expands the investigation of the recent DFI mechanism to
all the three major fiber laser operation wavelengths from 1.0 to
2.0 μm. Meanwhile, chaotic pattern generation is also investi-
gated, leading to the generation of RWs associated with the
nonlinear collision processes. Our investigations could benefit
the applied field of mid-IR multigigahertz frequency comb gen-
eration, as well as enhance the understanding of the DFI mech-
anisms in laser physics.
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