• Journal of Semiconductors
  • Vol. 42, Issue 8, 082301 (2021)
Dapeng Liu1、2, Jian Tang1、2, Yao Meng1、2, Wei Li1、2, Ninghua Zhu1、2, and Ming Li1、2
Author Affiliations
  • 1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Science, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/42/8/082301 Cite this Article
    Dapeng Liu, Jian Tang, Yao Meng, Wei Li, Ninghua Zhu, Ming Li. Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator[J]. Journal of Semiconductors, 2021, 42(8): 082301 Copy Citation Text show less
    References

    [1] R Soref. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 12, 1678(2006).

    [2] L Thylén, L Wosinski. Integrated photonics in the 21st century. Photon Res, 2, 75(2014).

    [3] J Zhang, M A Itzler, H Zbinden et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Sci Appl, 4, e286(2015).

    [4] Z C Wang, B Tian, M Pantouvaki et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 9, 837(2015).

    [5] J Müller, F Merget, Azadeh S Sharif et al. Optical peaking enhancement in high-speed ring modulators. Sci Rep, 4, 6310(2014).

    [6] H T Lin. Mid-infrared lasers on silicon operating close to room temperature. J Semicond, 40, 100202(2019).

    [7] X L Cai. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J Semicond, 40, 100301(2019).

    [8] C Zhao, B Xu, Z J Wang et al. Boron-doped III–V semiconductors for Si-based optoelectronic devices. J Semicond, 41, 011301(2020).

    [9] C H Li, J Deng, W Y Sun et al. Improvement of tunnel compensated quantum well infrared detector. J Semicond, 40, 122902(2019).

    [10]

    [11]

    [12] J Hofrichter, O Raz, A La Porta et al. A low-power high-speed InP microdisk modulator heterogeneously integrated on a SOI waveguide. Opt Express, 20, 9363(2012).

    [13] T Sadagopan, S J Choi, S J Choi et al. Carrier-induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation. IEEE Photonics Technol Lett, 17, 414(2005).

    [14] S Andreou, A Millan-Mejia, M Smit et al. Slot waveguide microring modulator on InP membrane. 20th Annual Symposium of the IEEE Photonics Benelux Chapter, 23(2015).

    [15] Q Xu, B Schmidt, S Pradhan et al. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325(2005).

    [16] S Manipatruni, K Preston, L Chen et al. Ultra-low voltage, ultra-small mode volume silicon microring modulator. Opt Express, 18, 18235(2010).

    [17] K Padmaraju, J Chan, L Chen et al. Thermal stabilization of a microring modulator using feedback control. Opt Express, 20, 27999(2012).

    [18] M S Hai, M M P Fard, O Liboiron-Ladouceur. A low-voltage PAM-4 SOI ring-based modulator. 2014 IEEE Photonics Conference, 194(2014).

    [19] M Gould, T Baehr-Jones, R Ding et al. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt Express, 19, 3952(2011).

    [20] P Dong, S Liao, D Feng et al. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt Express, 17, 22484(2009).

    [21] P Dong, R Shafiiha, S Liao et al. Wavelength-tunable silicon microring modulator. Opt Express, 18, 10941(2010).

    [22] L Chen, Q Xu, M G Wood et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112(2014).

    [23] Y Hu, X Xiao, H Xu et al. High-speed silicon modulator based on cascaded microring resonators. Opt Express, 20, 15079(2012).

    [24] Z Tang, S Pan, J Yao. A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator. Opt Express, 20, 6555(2012).

    [25] T Baba, S Akiyama, M Imai et al. 50-Gb/s ring-resonator-based silicon modulator. Opt Express, 21, 11869(2013).

    [26] X Xiao, H Xu, X Li et al. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt Express, 20, 2507(2012).

    [27] Q F Xu, S Manipatruni, B Schmidt et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Express, 15, 430(2007).

    [28] F N Xia, L Sekaric, Y Vlasov. Ultracompact optical buffers on a silicon chip. Nat Photonics, 1, 65(2007).

    [29] Q F Xu, D Fattal, R G Beausoleil. Silicon microring resonators with 1.5-µm radius. Opt Express, 16, 4309(2008).

    [30] Y Okawachi, K Saha, J S Levy et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett, 36, 3398(2011).

    [31] H C Frankis, K M Kiani, D Su et al. High-Q tellurium-oxide-coated silicon nitride microring resonators. Opt Lett, 44, 118(2018).

    [32] M Zhang, C Wang, R Cheng et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [33] A Guarino, G Poberaj, D Rezzonico et al. Electro–optically tunable microring resonators in lithium niobate. Nat Photonics, 1, 407(2007).

    [34] M Zhang, B Buscaino, C Wang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

    [35] X F Fang, L Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect. J Semicond, 38, 104004(2017).

    [36] V M Menon, W Tong, S R Forrest. Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier. IEEE Photonics Technol Lett, 16, 1343(2004).

    [37] B E Little, S T Chu, H A Haus et al. Microring resonator channel dropping filters. J Lightwave Technol, 15, 998(1997).

    [38] D G Rabus, Z X Bian, A Shakouri. Ring resonator lasers using passive waveguides and integrated semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 13, 1249(2007).

    [39] K Amarnath, R Grover, S Kanakaraju et al. Electrically pumped InGaAsP-InP microring optical amplifiers and lasers with surface passivation. IEEE Photonics Technol Lett, 17, 2280(2005).

    [40] M Fujii, C Koos, C Poulton et al. Nonlinear FDTD analysis and experimental verification of four-wave mixing in InGaAsP-InP racetrack microresonators. IEEE Photonics Technol Lett, 18, 361(2006).

    [41] L X Zou, Y Z Huang, X M Lv et al. Modulation characteristics and microwave generation for AlGaInAs/InP microring lasers under four-wave mixing. Photon Res, 2, 177(2014).

    [42] W Jun, L Wang, C Yang et al. Optical vector network analyzer based on double-sideband modulation. Opt Lett, 42, 4426(2017).

    Dapeng Liu, Jian Tang, Yao Meng, Wei Li, Ninghua Zhu, Ming Li. Ultra-low Vpp and high-modulation-depth InP-based electro–optic microring modulator[J]. Journal of Semiconductors, 2021, 42(8): 082301
    Download Citation