• Acta Optica Sinica
  • Vol. 41, Issue 9, 0913001 (2021)
Ruolan Yu1, Jun Li1, Weiwei Chen1、*, and Pengjun Wang2、**
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2College of Mathematical, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • show less
    DOI: 10.3788/AOS202141.0913001 Cite this Article Set citation alerts
    Ruolan Yu, Jun Li, Weiwei Chen, Pengjun Wang. Silicon-Based All-Optical Fredkin Gate Using Cross-Phase Modulation Effect[J]. Acta Optica Sinica, 2021, 41(9): 0913001 Copy Citation Text show less
    References

    [1] Chen X, Milosevic M M. Stankovi S, et al. The emergence of silicon photonics as a flexible technology platform[J]. Proceedings of the IEEE, 106, 2101-2116(2018).

    [2] Atabaki A H, Moazeni S, Pavanello F et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip[J]. Nature, 556, 349-354(2018).

    [3] Rahim A, Spuesens T, Baets R et al. Open-access silicon photonics: current status and emerging initiatives[J]. Proceedings of the IEEE, 106, 2313-2330(2018).

    [4] Liu J Q, Lucas E, Raja A S et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs[J]. Nature Photonics, 14, 486-491(2020). http://www.nature.com/articles/s41566-020-0617-x

    [5] Xu G Y, Chen Y, Li P L et al. Three-input all-optical and gate based on two-dimensional photonic crystal[J]. Chinese Journal of Lasers, 47, 1013002(2020).

    [6] Wang S X, Lang T T, Song G Y et al. SiON-based cyclic arrayed waveguide grating routers with improved loss uniformity[J]. Acta Optica Sinica, 39, 1123001(2019).

    [7] Chen H G, Zhang B, Ma W D et al. Automatic bias volatge control technology of in-phase quadrature-phase silicon-based optical modulator[J]. Acta Optica Sinica, 39, 0306003(2019).

    [8] Mere V, Dash A, Kallega R et al. On-chip silicon photonics based grating assisted vibration sensor[J]. Optics Express, 28, 27495-27505(2020).

    [9] Arnold G, Wulf M, Barzanjeh S et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface[J]. Nature Communications, 11, 4460(2020). http://www.nature.com/articles/s41467-020-18269-z

    [10] Landauer R. Irreversibility and heat generation in the computing process[J]. IBM Journal of Research and Development, 5, 183-191(1961).

    [11] Shi X F. Deutsch. CNOT gates via rydberg blockade of neutral atoms[J]. Physical Review Applied, 9, 051001(2018).

    [12] Wang P J, Ding J, Chen W W et al. Plasmonic Feynman gate based on suspended graphene nano-ribbon waveguides at THz wavelengths[J]. IEEE Photonics Journal, 11, 18715045(2019). http://ieeexplore.ieee.org/document/8718804/

    [13] Wang P J, Ding J, Chen W W et al. Terahertz plasmonic SWAP and Fredkin gates utilizing graphene nano-ribbon waveguides[J]. Optics Communications, 463, 125397(2020). http://www.sciencedirect.com/science/article/pii/S0030401820300845

    [14] Kashtiban M H, Banaei H A, Tavakoli M B et al. Creation of a fast optical Toffoli gate based on photonic crystal nonlinear ring resonators[J]. Journal of Computational Electronics, 19, 1281-1287(2020). http://link.springer.com/article/10.1007/s10825-020-01508-3

    [15] Chattopadhyay T. All-optical modified fredkin gate[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 585-592(2012). http://ieeexplore.ieee.org/document/5737751

    [16] Sethi P, Roy S. All-optical ultrafast switching in 2×2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates[J]. Journal of Lightwave Technology, 32, 2173-2180(2014).

    [17] Cohen E, Dolev S, Rosenblit M et al. All-optical design for inherently energy-conserving reversible gates and circuits[J]. Nat Commun, 7, 11424(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4853429/

    [18] Bharti G K, Rakshit J K. Micro-ring resonator based all optical reversible logic gates and its applications[J]. Optoelectronics and Advanced Materials-Rapid Communications, 13, 10-19(2019). http://www.researchgate.net/publication/333078520_Micro-ring_resonator_based_all_optical_reversible_logic_gates_and_its_applications/download

    [19] Kashtiban M H, Banaei H A, Tavakoli M B et al. All-optical Fredkin gate using photonic-crystal-based nonlinear cavities[J]. Applied Optics, 59, 635-641(2020). http://www.researchgate.net/publication/337777900_All_optical_Fredkin_gate_using_phtonic_crystal_based_nonlinear_cavities

    [20] Zhou P, Gao S M, Li X B et al. Enhancement of nonlinear phase shift for format conversion in silicon waveguides[J]. Proceedings of SPIE, 8855, 88550T(2013). http://spie.org/x648.xml?product_id=2023248

    [21] Tien E K, Huang Y W, Gao S M et al. Discrete parametric band conversion in silicon for mid-infrared applications[J]. Optics Express, 18, 21981-21989(2010). http://www.ncbi.nlm.nih.gov/pubmed/20941099

    [22] Soref R, Bennett B. Electrooptical effects in silicon[J]. IEEE Journal of Quantum Electronics, 23, 123-129(1987). http://ieeexplore.ieee.org/document/1073206/references

    [23] Hsieh I W, Chen X G, Dadap J I et al. Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires[J]. Optics Express, 15, 1135-1146(2007).

    [24] Taha T R, Ablowitz M I. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation[J]. Journal of Computational Physics, 55, 203-230(1984). http://www.ams.org/mathscinet-getitem?mr=762363

    [25] Aspnes D E, Studna A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B, 27, 985(1983).

    [26] Tan C Z. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy[J]. Journal of Non-Crystalline Solids, 223, 158-163(1998). http://www.sciencedirect.com/science/article/pii/S0022309397004389

    [27] Wang Z L, Liu H J, Huang N et al. Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides[J]. Optics Express, 21, 1840-1848(2013).

    [28] Pearl S. Rotenberg N, van Driel H M, et al. Three photon absorption in silicon for 2300-3300 nm[J]. Applied Physics Letters, 93, 131102(2008).

    [29] Lin Q, Painter O J, Agrawal G P et al. Nonlinear optical phenomena in silicon waveguides: modeling and applications[J]. Optics Express, 15, 16604-16644(2007).

    [30] Adams M J, Ritchie S, Robertson M J et al. Optimum overlap of electric and optical fields in semiconductor waveguide devices[J]. Applied Physics Letters, 48, 820-822(1986). http://ieeexplore.ieee.org/xpls/abs_all.jsp%3Farnumber%3D4854565

    Ruolan Yu, Jun Li, Weiwei Chen, Pengjun Wang. Silicon-Based All-Optical Fredkin Gate Using Cross-Phase Modulation Effect[J]. Acta Optica Sinica, 2021, 41(9): 0913001
    Download Citation