• Acta Optica Sinica
  • Vol. 41, Issue 9, 0913001 (2021)
Ruolan Yu1, Jun Li1, Weiwei Chen1、*, and Pengjun Wang2、**
Author Affiliations
  • 1Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, China
  • 2College of Mathematical, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
  • show less
    DOI: 10.3788/AOS202141.0913001 Cite this Article Set citation alerts
    Ruolan Yu, Jun Li, Weiwei Chen, Pengjun Wang. Silicon-Based All-Optical Fredkin Gate Using Cross-Phase Modulation Effect[J]. Acta Optica Sinica, 2021, 41(9): 0913001 Copy Citation Text show less
    Silicon-based all-optical Fredkin gate based on XPM effect. (a) Structural schematic; (b) schematic of section of phase shift arm; (c) mode field distribution of TE mode
    Fig. 1. Silicon-based all-optical Fredkin gate based on XPM effect. (a) Structural schematic; (b) schematic of section of phase shift arm; (c) mode field distribution of TE mode
    Schematic of fractional Fourier transform method
    Fig. 2. Schematic of fractional Fourier transform method
    Influence of waveguide structural parameters on performance of silicon-based all-optical Fredkin gate. (a) Waveguide linear absorption coefficient; (b) worst extinction ratio; (c) pump light power
    Fig. 3. Influence of waveguide structural parameters on performance of silicon-based all-optical Fredkin gate. (a) Waveguide linear absorption coefficient; (b) worst extinction ratio; (c) pump light power
    Influence of beam splitting ratio on worst extinction ratio of silicon-based all-optical Fredkin gate. (a) Sr1; (b) Sr2; (c) Sr3; (d) Sr4
    Fig. 4. Influence of beam splitting ratio on worst extinction ratio of silicon-based all-optical Fredkin gate. (a) Sr1; (b) Sr2; (c) Sr3; (d) Sr4
    Spectrum of silicon-based all-optical Fredkin gates in different logic states. (a) Output signal is 000; (b) output signal is 001; (c) output signal is 010; (d) output signal is 011; (e) output signal is 100; (f) output signal is 110; (g) output signal is 101; (h) output signal is 111
    Fig. 5. Spectrum of silicon-based all-optical Fredkin gates in different logic states. (a) Output signal is 000; (b) output signal is 001; (c) output signal is 010; (d) output signal is 011; (e) output signal is 100; (f) output signal is 110; (g) output signal is 101; (h) output signal is 111
    Dynamic response diagram of silicon-based all-optical Fredkin gate
    Fig. 6. Dynamic response diagram of silicon-based all-optical Fredkin gate
    Input signalOutput signalXPM
    ABCQPR
    0000000
    0010010
    0100100
    0110110
    1001000
    1011101
    1101011
    1111111
    Table 1. Output of silicon-based all-optical Fredkin gates with different inputs
    Input 1 /WInput 2 /mWInput 3 /mWOutput 1 /mWOutput 2 /mWOutput 3 /mW
    00002.302×10-42.302×10-4
    0024.17202.302×10-416.15
    024.1720016.152.302×10-4
    024.17224.172016.1516.15
    24.1720024.1722.302×10-42.302×10-4
    24.172024.17224.17216.272.302×10-4
    24.17224.172024.1722.302×10-416.27
    24.17224.17224.17224.17216.2716.27
    Table 2. Output power of silicon-based all-optical Fredkin gate at different input power
    TypePump lightpower /mWLinear absorptioncoefficient /(dB·m-1)Extinction ratio /dB
    Fredkin gate in Ref. [15]2.0034.30013.00
    Fredkin gate in Ref. [16]25.00NA8.13
    Fredkin gate in Ref. [17]1×10330.000NA
    Fredkin gate in Ref. [18]1.82NA12.23
    Fredkin gate in this work24.172×10354.15448.46
    Table 3. Performance comparison of different Fredkin gaints
    Ruolan Yu, Jun Li, Weiwei Chen, Pengjun Wang. Silicon-Based All-Optical Fredkin Gate Using Cross-Phase Modulation Effect[J]. Acta Optica Sinica, 2021, 41(9): 0913001
    Download Citation