• Acta Optica Sinica
  • Vol. 41, Issue 3, 0323001 (2021)
Yuan Shen, Lingjun Meng, Mengyu Wang, Yu Yang, and Keyi Wang*
Author Affiliations
  • Laboratory of Optoelectronic Information Technology, Department of Precision Machinery and Precision Instrument, University of Science and Technology of China, Hefei, Anhui 230027, China
  • show less
    DOI: 10.3788/AOS202141.0323001 Cite this Article Set citation alerts
    Yuan Shen, Lingjun Meng, Mengyu Wang, Yu Yang, Keyi Wang. Dispersion Engineering of Magnesium Fluoride Wedge Resonator and Numerical Analysis for Soliton Generation[J]. Acta Optica Sinica, 2021, 41(3): 0323001 Copy Citation Text show less
    References

    [1] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Physical Review Letters, 93, 083904(2004). http://www.ncbi.nlm.nih.gov/pubmed/15447188

    [2] Del'Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007). http://www.nature.com/articles/nature06401

    [3] Herr T, Brasch V, Jost J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014). http://smartsearch.nstl.gov.cn/paper_detail.html?id=3e35d82d00d96192ec8a74fc7205ff1a

    [4] Brasch V, Geiselmann M. Pfeiffer M H P, et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state[J]. Optics Express, 24, 29312-29320(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-25-29312

    [5] Wang W, Lu Z, Zhang W F et al. Robust soliton crystals in a thermally controlled microresonator[J]. Optics Letters, 43, 2002-2005(2018). http://www.ncbi.nlm.nih.gov/pubmed/29714731

    [6] Wang W Q, Chu S T, Little B E et al. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing[J]. Scientific Reports, 6, 28501(2016).

    [7] Grudinin I S, Matsko A B, Savchenkov A A et al. Ultra high Q crystalline microcavities[J]. Optics Communications, 265, 33-38(2006).

    [8] Guo H, Karpov M, Lucas E et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=e89a66e9e7f79ddc305220dee6b9655e

    [9] Xue X X, Xuan Y, Liu Y et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015). http://www.nature.com/articles/nphoton.2015.137

    [10] Xu X, Hu X H, Feng Y et al. Spatiotemporal evolution of the light field inside the microresonator with normal dispersion[J]. Acta Optica Sinica, 36, 0619001(2016).

    [11] Mazzola M, Chiappini A et al. Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer[J]. Optics Letters, 39, 5173-5176(2014).

    [12] Jin X Y, Wang J, Wang M Y et al. Dispersion engineering of a microsphere via multi-layer coating[J]. Applied Optics, 56, 8023-8028(2017).

    [13] Jiang W C, Zhang J D, Usechak N G et al. Dispersion engineering of high-Q silicon microresonators via thermal oxidation[J]. Applied Physics Letters, 105, 031112(2014). http://scitation.aip.org/content/aip/journal/apl/105/3/10.1063/1.4890986

    [14] Nakagawa Y, Mizumoto Y, Kato T et al. Dispersion tailoring of a crystalline whispering gallery mode microcavity for a wide-spanning optical Kerr frequency comb[J]. Journal of the Optical Society of America B, 33, 1913-1920(2016).

    [15] Grudinin I S, Yu N. Dispersion engineering of crystalline resonators via microstructuring[J]. Optica, 2, 221-224(2015). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-2-3-221

    [16] Riesen N, Zhang W Q, Monro T M. Dispersion in silica microbubble resonators[J]. Optics Letters, 41, 1257-1260(2016).

    [17] Lin G P, Chembo Y K. On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range[J]. Optics Express, 23, 1594-1604(2015).

    [18] Godey C, Balakireva I V, Coillet A et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes[J]. Physical Review A, 89, 063814(2014).

    [19] Matsko A B, Ilchenko V S, Savchenkov A A et al. Active mode locking with whispering-gallery modes[J]. Journal of the Optical Society of America B, 20, 2292-2296(2003).

    [20] Dodge M J. Refractive properties of magnesium fluoride[J]. Applied Optics, 23, 1980-1985(1984).

    [21] Riemensberger J, Hartinger K, Herr T et al. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition[J]. Optics Express, 20, 27661-27669(2012).

    [22] Chembo Y K, Yu N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators[J]. Physical Review A, 82, 033801(2010).

    [23] Karpov M. Pfeiffer M H P, Guo H R, et al. Dynamics of soliton crystals in optical microresonators[J]. Nature Physics, 15, 1071-1077(2019).

    [24] Chembo Y K, Menyuk C R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators[J]. Physical Review A, 87, 053852(2013).

    [25] Carmon T, Yang L, Vahala K. Dynamical thermal behavior and thermal self-stability of microcavities[J]. Optics Express, 12, 4742-4750(2004).

    [26] Kippenberg T J, Gaeta A L, Lipson M et al. 361(6402): eaan8083(2018).

    Yuan Shen, Lingjun Meng, Mengyu Wang, Yu Yang, Keyi Wang. Dispersion Engineering of Magnesium Fluoride Wedge Resonator and Numerical Analysis for Soliton Generation[J]. Acta Optica Sinica, 2021, 41(3): 0323001
    Download Citation