• Photonics Research
  • Vol. 10, Issue 5, 1238 (2022)
Biqiang Jiang1、2、*, Xiaoming Zhang1, Ailun Li1, Yueguo Hou1, Zhen Hao1, Xuetao Gan1、3、*, and Jianlin Zhao1
Author Affiliations
  • 1Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
  • 2e-mail: bqjiang@nwpu.edu.cn
  • 3e-mail: xuetaogan@nwpu.edu.cn
  • show less
    DOI: 10.1364/PRJ.453762 Cite this Article Set citation alerts
    Biqiang Jiang, Xiaoming Zhang, Ailun Li, Yueguo Hou, Zhen Hao, Xuetao Gan, Jianlin Zhao. Electrically induced dynamic Fano-like resonance in a graphene-coated fiber grating[J]. Photonics Research, 2022, 10(5): 1238 Copy Citation Text show less
    References

    [1] M. F. Limonov. Fano resonance for applications. Adv. Opt. Photon., 13, 703-771(2021).

    [2] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124, 1866-1878(1961).

    [3] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [4] Z. Xu, Y. Luo, Q. Sun, C. Mou, Y. Li, P. P. Shum, D. Liu. Light velocity control in monolithic microfiber bridged ring resonator. Optica, 4, 945-950(2017).

    [5] C.-Y. Chao, L. J. Guo. Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett., 83, 1527-1529(2003).

    [6] S. Zhang, S.-J. Tang, S. Feng, Y.-F. Xiao, W. Cui, X. Wang, W. Sun, J. Ye, P. Han, X. Zhang, Y. Zhang. High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing. Adv. Opt. Mater., 7, 1900602(2019).

    [7] S. Fan. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl. Phys. Lett., 80, 908-910(2002).

    [8] M. Rahmani, B. Luk’yanchuk, M. Hong. Fano resonance in novel plasmonic nanostructures. Laser Photon. Rev., 7, 329-349(2013).

    [9] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257-2298(2010).

    [10] A. Bogdanov, K. Koshelev, P. Kapitanova, M. Rybin, S. Gladyshev, Z. Sadrieva, K. Samusev, Y. Kivshar, M. Limonov. “Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv. Photon., 1, 016001(2019).

    [11] P. Fan, Z. Yu, S. Fan, M. L. Brongersma. Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater., 13, 471-475(2014).

    [12] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [13] J. Wang, X. Zhang, M. Yan, L. Yang, F. Hou, W. Sun, X. Zhang, L. Yuan, H. Xiao, T. Wang. Embedded whispering-gallery mode microsphere resonator in a tapered hollow annular core fiber. Photon. Res., 6, 1124-1129(2018).

    [14] B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li, Q. Gong. Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Appl. Phys. Lett., 100, 021108(2012).

    [15] K. Zhang, Y. Wang, Y.-H. Wu. Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator. Opt. Lett., 42, 2956-2959(2017).

    [16] A. Chiba, H. Fujiwara, J.-I. Hotta, S. Takeuchi, K. Sasaki. Fano resonance in a multimode tapered fiber coupled with a microspherical cavity. Appl. Phys. Lett., 86, 261106(2005).

    [17] C. Zhao, X. Gan, L. Fang, L. Han, K. Chang, D. Li, J. Zhao. Tunable Fano-like resonance enabled by coupling a microsphere with a fiber Mach-Zehnder interferometer. Appl. Opt., 55, 5756-5760(2016).

    [18] P. Chang, B. Cao, L. Huang, J. Li, Y. Hu, F. Gao, W. Zhang, F. Bo, X. Yu, G. Zhang, J. Xu. Polarization-modified Fano line shape spectrum with a single whispering gallery mode. Sci. China: Phys., Mech. Astron., 63, 214211(2019).

    [19] L. Chen, Y. Han, Q. Liu, Y.-G. Liu, W. Zhang, K. C. Chou. Microcavity-coupled fiber Bragg grating with tunable reflection spectra and speed of light. Opt. Lett., 43, 1662-1665(2018).

    [20] Z. Chenari, H. Latifi, O. R. Ranjbar-Naeini, M. I. Zibaii, E. Behroodi, A. Asadollahi. Tunable Fano-like lineshape in an adiabatic tapered fiber coupled to a hollow bottle microresonator. J. Lightwave Technol., 36, 735-741(2018).

    [21] B. Jiang, X. Gan, L. Gu, Z. Hao, S. Wang, Z. Bi, L. Zhang, K. Zhou, J. Zhao. Fano-like resonance in an all-in-fiber structure. IEEE Photon. J., 11, 7102907(2019).

    [22] X. Zhang, Y. Yang, H. Bai, J. Wang, M. Yan, H. Xiao, T. Wang. Theoretical aspects and sensing demonstrations of cone-shaped inwall capillary-based microsphere resonators. Photon. Res., 5, 516-520(2017).

    [23] A. Li, B. Jiang, P. Zhang, X. Gan, Z. Hao, Y. Hou, J. Zhang, P. Li, J. Zhao. Realization and modulation of Fano-like lineshape in fiber Bragg gratings. J. Lightwave Technol., 39, 4419-4423(2021).

    [24] W. Lin, H. Zhang, S.-C. Chen, B. Liu, Y.-G. Liu. Microstructured optical fiber for multichannel sensing based on Fano resonance of the whispering gallery modes. Opt. Express, 25, 994-1004(2017).

    [25] F. Lei, B. Peng, Ş. K. Özdemir, G. L. Long, L. Yang. Dynamic Fano-like resonances in erbium-doped whispering-gallery-mode microresonators. Appl. Phys. Lett., 105, 101112(2014).

    [26] B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, L. Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    [27] L. Mao, Y. Li, G. Li, S. Zhang, T. Cao. “Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv. Photon., 2, 056004(2020).

    [28] B. Jiang, Y. Hou, H. Wang, X. Gan, A. Li, Z. Hao, K. Zhou, L. Zhang, J. Zhao. Few-layer graphene integrated tilted fiber grating for all-optical switching. J. Lightwave Technol., 39, 1477-1482(2021).

    [29] B. Jiang, G. Yin, K. Zhou, C. Wang, X. Gan, J. Zhao, L. Zhang. Graphene-induced unique polarization tuning properties of excessively tilted fiber grating. Opt. Lett., 41, 5450-5453(2016).

    [30] X. Wang, W. Jin, Z. Chang, K. S. Chiang. Buried graphene electrode heater for a polymer waveguide thermo-optic device. Opt. Lett., 44, 1480-1483(2019).

    [31] L. Gu, H. Fang, J. Li, L. Fang, S. J. Chua, J. Zhao, X. Gan. A compact structure for realizing Lorentzian, Fano, and electromagnetically induced transparency resonance lineshapes in a microring resonator. Nanophotonics, 8, 841-848(2019).

    [32] Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, J. Mørk. Fano resonance control in a photonic crystal structure and its application to ultrafast switching. Appl. Phys. Lett., 105, 061117(2014).

    [33] M. Heuck, P. T. Kristensen, Y. Elesin, J. Mørk. Improved switching using Fano resonances in photonic crystal structures. Opt. Lett., 38, 2466-2468(2013).

    [34] X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, J. Zhao. Graphene-assisted all-fiber phase shifter and switching. Optica, 2, 468-471(2015).

    Biqiang Jiang, Xiaoming Zhang, Ailun Li, Yueguo Hou, Zhen Hao, Xuetao Gan, Jianlin Zhao. Electrically induced dynamic Fano-like resonance in a graphene-coated fiber grating[J]. Photonics Research, 2022, 10(5): 1238
    Download Citation