• Acta Optica Sinica
  • Vol. 41, Issue 17, 1732001 (2021)
Yan Wang, Ling Zhu, Xuexian Yang*, Xiaoyun Wang, and Jinzhang Peng**
Author Affiliations
  • College of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou, Hunan 416000, China
  • show less
    DOI: 10.3788/AOS202141.1732001 Cite this Article Set citation alerts
    Yan Wang, Ling Zhu, Xuexian Yang, Xiaoyun Wang, Jinzhang Peng. Raman Shift Temperature Effect and New Temperature Measurement Method[J]. Acta Optica Sinica, 2021, 41(17): 1732001 Copy Citation Text show less
    References

    [1] Peng H B. Development and application research of distributed optical fiber sensing technology[J]. Engineering and Technological Research, 4, 14-16(2019).

    [2] Liu W H. Application of distributed optical fiber temperature measurement technology in port[J]. Grain Processing, 45, 48-55(2020).

    [3] Lin F K[J]. Application of distribution optical fiber in temperature measurement of copper electrolysis Nonferrous Metals (Extractive Metallurgy), 2020, 36-40.

    [4] Wang C, Liu Q W, Chen D et al. Monitoring pipeline leakage using fiber-optic distributed acoustic sensor[J]. Acta Optica Sinica, 39, 1006005(2019).

    [5] Pan L, Liu K, Jiang J F et al. Distributed fiber-optic vibration and temperature sensin system[J]. Chinese Journal of Lasers, 45, 0110002(2018).

    [6] Fei Q, Qin J. Distributed optical fiber temperature measurement system based on Raman scattering applied to building fire monitor[J]. Fire Safety Science, 24, 109-113(2015).

    [7] Xing H J, Qiao Q X, Jin Z X. Monitoring technology of nuclear power primary circuit leakage point based on distributed temperature sensor[J]. Acta Photonica Sinica, 48, 0506004(2019).

    [8] Peng K, Feng C, Wang S M et al. Event discrimination method for distributed optical fiber intrusion sensing system based on integrated time/frequency domain feature extraction[J]. Acta Optica Sinica, 39, 0628002(2019).

    [9] Liu Y P, Ye Z S, Liu G et al. Distributed temperature sensor system[J]. Hydropower Automation and Dam Monitoring, 35, 55-58(2011).

    [10] Zhang S L[M]. Raman spectroscopy and low-dimensional nano-semiconductor, 9-10(2008).

    [11] Dakin J P, Pratt D J, Bibby G W et al. Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Electronics Letters, 21, 569-570(1985).

    [12] Wang T, Tian F, Tang W Q et al. Brillouin frequency shift extraction method for distributed optical fiber temperature sensing system[J]. Laser & Optoelectronics Progress, 56, 170631(2019).

    [13] Zhang Y. Research and implement of method and technology of distributed optical fiber fire warning based on Raman scatter[D]. Taiyuan: North University of China, 10-30(2011).

    [14] Xue Z P, Wang D, Wang Y et al. Research on performance optimization of SNR for distributed optical fiber Raman temperature measurement system[J]. Chinese Journal of Sensors and Actuators, 33, 17-21(2020).

    [15] Balkanski M, Wallis R F, Haro E. Anharmonic effects in light scattering due to optical phonons in silicon[J]. Physical Review B, 28, 1928-1934(1983).

    [16] Menéndez J, Cardona M. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: anharmonic effects[J]. Physical Review B, 29, 2051-2059(1984).

    [17] Liu M S, Bursill L A, Prawer S et al. Temperature dependence of the first-order Raman phonon line of diamond[J]. Physical Review B, 61, 3391-3395(2000).

    [18] Yang X X, Peng C, Li L et al. Multifield-resolved phonon spectrometrics: structured crystals and liquids[J]. Progress in Solid State Chemistry, 55, 20-66(2019).

    [19] Liu X K, Wang J L, Xu C Y et al. Temperature-dependent phonon shifts in mono-layer, few-layer, and bulk WS2 films[J]. Acta Physico-Chimica Sinica, 35, 1134-1141(2019).

    [20] Thripuranthaka M, Late D J. Temperature dependent phonon shifts in single-layer WS2[J]. ACS Applied Materials & Interfaces, 6, 1158-1163(2014).

    [21] Wang D H, Xu S R, Hao Y et al. Study on the relationships between Raman shifts and temperature range for α-plane GaN using temperature-dependent Raman scattering[J]. Chinese Physics B, 22, 028101(2013).

    [22] Calizo I, Balandin A A, Bao W et al. Temperature dependence of the Raman spectra of graphene and graphene multilayers[J]. Nano Letters, 7, 2645-2649(2007).

    [23] Sun C Q, Huang Y L, Wang Y[M]. Relaxation of chemical bonds, 193-196(2017).

    [24] Cui J B, Amtmann K, Ristein J et al. Noncontact temperature measurements of diamond by Raman scattering spectroscopy[J]. Journal of Applied Physics, 83, 7929-7933(1998).

    [25] Everall N J, Lumsdon J, Christopher D J. The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres[J]. Carbon, 29, 133-137(1991).

    [26] Freitas Neto E S, Dantas N O, da Silva S W et al. Temperature-dependent Raman study of thermal parameters in CdS quantum dots[J]. Nanotechnology, 23, 125701(2012).

    [27] Kim J, Freitas J A, Mittereder J. Jr, et al. Effective temperature measurements of AlGaN/GaN-based HEMT under various load lines using micro-Raman technique[J]. Solid-State Electronics, 50, 408-411(2006).

    [28] Yang X X, Liu Y H, Liu X J et al. Composition- and temperature-resolved Raman shift of silicon[J]. Applied Spectroscopy, 72, 598-603(2018).

    Yan Wang, Ling Zhu, Xuexian Yang, Xiaoyun Wang, Jinzhang Peng. Raman Shift Temperature Effect and New Temperature Measurement Method[J]. Acta Optica Sinica, 2021, 41(17): 1732001
    Download Citation