• Acta Optica Sinica
  • Vol. 40, Issue 3, 0313001 (2020)
Jie Zhang* and Yong Zhu
Author Affiliations
  • Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.3788/AOS202040.0313001 Cite this Article Set citation alerts
    Jie Zhang, Yong Zhu. Slot-Waveguide Coupled Nanostructure Enhanced Raman Spectroscopy[J]. Acta Optica Sinica, 2020, 40(3): 0313001 Copy Citation Text show less
    References

    [1] Jeanmaire D L, van Duyne R P. Surface Raman spectro electrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry, 84, 1-20(1977).

    [2] Li W Y. Camargo P H C, Lu X M, et al. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano Letters, 9, 485-490(2009).

    [3] Fleischmann M, Hendra P J. McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [4] Chen L X, Choo J. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips[J]. Electrophoresis, 29, 1815-1828(2008). http://onlinelibrary.wiley.com/doi/full/10.1002/elps.200700554

    [5] Schmidt M K, Esteban R, González-Tudela A et al. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities[J]. ACS Nano, 10, 6291-6298(2016).

    [6] Banaee M G, Crozier K B. Gold nanorings as substrates for surface-enhanced Raman scattering[J]. Optics Letters, 35, 760-762(2010).

    [7] Li J F, Huang Y F, Ding Y et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 464, 392-395(2010).

    [8] Sivapalan S T. DeVetter B M, Yang T K, et al. Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought[J]. ACS Nano, 7, 2099-2105(2013).

    [9] Zhang J, Zhang X L, Chen S M et al. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles[J]. Carbon, 100, 395-407(2016).

    [10] Niu W X. Chua Y A A, Zhang W Q, et al. Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property[J]. Journal of the American Chemical Society, 137, 10460-10463(2015).

    [11] Ye J, Wen F F, Sobhani H et al. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS[J]. Nano Letters, 12, 1660-1667(2012).

    [12] Kneipp K, Kneipp H. Single molecule Raman scattering[J]. Applied Spectroscopy, 60, 322A-334A(2006).

    [13] Hanf S, Bögözi T, Keiner R et al. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath[J]. Analytical Chemistry, 87, 982-988(2015).

    [14] Wong H M K, Dezfouli M K, Sun L et al. Nanoscale plasmonic slot waveguides for enhanced Raman spectroscopy[J]. Physical Review B, 98, 085124(2018).

    [15] Ling S Y, Zhang Z C, Chen P et al. Silicon nitride waveguide integrated with cross bowtie nanoplasmonic antenna for tunable dipole plasmon resonance and maximum local field enhancement[J]. Optical Engineering, 57, 117108(2018).

    [16] Sun X D, Zhang S W, Wu F et al. Surface electromagnetic field enhancement of sub-wavelength metallic groove array[J]. Chinese Journal of Lasers, 44, 1113001(2017).

    [17] Dou X Y, Zhang J, Chen S M et al. Process optimization and Raman spectroscopy enhancement experiment of multimode tapered fiber SERS probe[J]. Acta Optica Sinica, 38, 0530001(2018).

    [18] Subramanian A Z, Ryckeboer E, Dhakal A et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited][J]. Photonics Research, 3, B47-B59(2015).

    [19] Hughes S. Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide[J]. Physical Review B, 75, 205437(2007).

    [20] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 69, 37-38(1946).

    [21] Dionne J A, Sweatlock L A, Atwater H A et al. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization[J]. Physical Review B, 73, 035407(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000013000002000054000001&idtype=cvips&gifs=Yes

    [22] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [23] Le Ru E C, Blackie E, Meyer M et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007).

    Jie Zhang, Yong Zhu. Slot-Waveguide Coupled Nanostructure Enhanced Raman Spectroscopy[J]. Acta Optica Sinica, 2020, 40(3): 0313001
    Download Citation