• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 046003 (2023)
Jiabin Yan*, Li Fang, Zhihang Sun, Hao Zhang, Jialei Yuan, Yan Jiang, and Yongjin Wang*
Author Affiliations
  • Nanjing University of Posts and Telecommunications, Peter Grünberg Research Center, Nanjing, China
  • show less
    DOI: 10.1117/1.APN.2.4.046003 Cite this Article Set citation alerts
    Jiabin Yan, Li Fang, Zhihang Sun, Hao Zhang, Jialei Yuan, Yan Jiang, Yongjin Wang. Complete active–passive photonic integration based on GaN-on-silicon platform[J]. Advanced Photonics Nexus, 2023, 2(4): 046003 Copy Citation Text show less
    References

    [1] C. Cole, B. Huebner, J. E. Johnson. Photonic integration for high-volume, low-cost applications. IEEE Commun. Mag., 47, S16-S22(2009).

    [2] A. Liu et al. Silicon photonic integration for high-speed applications. Proc. SPIE, 6898, 117-126(2008).

    [3] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [4] Y. Yang et al. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration. Opt. Mater., 64, 160-165(2017).

    [5] C. R. Doerr. Silicon photonic integration in telecommunications. Front. Phys., 3, 37(2015).

    [6] M. A. G. Porcel et al. Silicon nitride photonic integration for visible light applications. Opt. Laser Technol., 112, 299-306(2019).

    [7] Z. L. Newman et al. Architecture for the photonic integration of an optical atomic clock. Optica., 6, 680-685(2019).

    [8] A. Argyris et al. Photonic integrated device for chaos applications in communications. Phys. Rev. Lett., 100, 194101(2008).

    [9] M. F. Soares et al. High-performance InP PIC technology development based on a generic photonic integration foundry, M3F–3(2018).

    [10] D. F. Welch et al. Large-scale InP photonic integrated circuits: enabling efficient scaling of optical transport networks. IEEE J. Sel. Top. Quantum Electron., 13, 22-31(2007).

    [11] M. Smit et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol., 29, 083001(2014).

    [12] M. Smit, K. Williams, J. V. D. Tol. Past, present, and future of InP-based photonic integration. APL Photonics, 4, 050901(2019).

    [13] J. E. Bowers, A. Y. Liu. A comparison of four approaches to photonic integration, 1-3(2017).

    [14] P. Koonath, T. Indukuri, B. Jalali. Monolithic 3-D silicon photonics. J. Lightwave Technol., 24, 1796(2006).

    [15] X. Chen, C. Li, H. K. Tsang. Device engineering for silicon photonics. NPG Asia Mater., 3, 34-40(2011).

    [16] J. C. Rosenberg et al. Monolithic silicon photonic WDM transceivers, 1-3(2017).

    [17] Z. Wang et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev., 11, 1700063(2017).

    [18] T. Boles. GaN-on-silicon—present capabilities and future directions, 020001(2018).

    [19] T. Boles. GaN-on-silicon present challenges and future opportunities, 21-24(2017).

    [20] A. Y. Liu, J. Bowers. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron., 24, 1-12(2018).

    [21] W. Cai et al. Monolithic photonic integrated circuit with a GaN-based bent waveguide. J. Micromech. Microeng., 28, 065003(2018).

    [22] M. Mikulics et al. Nano-LED driven phase change evolution of layered chalcogenides for Raman spectroscopy investigations. FlatChem, 36, 100447(2022).

    [23] H. X. Jiang, J. Y. Lin. Nitride micro-LEDs and beyond: a decade progress review. Opt. Express, 21, A475-A484(2013).

    [24] M. Mikulics, J. Mayer, H. H. Hardtdegen. Cutting-edge nano-LED technology. J. Appl. Phys., 131, 110903(2022).

    [25] Q. Wang et al. Monolithic semi-polar (1ī01) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate. Chin. Phys. B, 28, 087802(2019).

    [26] J. Yan, J. Piao, Y. Wang. An enhancement mode MOSFET based on GaN-on-silicon platform for monolithic OEIC. IEEE Electron Device Lett., 41, 76-79(2019).

    [27] K. S. Boutros et al. Normally-off 5A/1100 V GaN-on-silicon device for high voltage applications, 1-3(2009).

    [28] N. Herbecq et al. Above 2000 V breakdown voltage at 600 K GaN-on-silicon high electron mobility transistors. Phys. Status Solidi-a, 213, 873-877(2016).

    [29] S. Yoshida et al. A 76 GHz GaN-on-silicon power amplifier for automotive radar systems, 665-668(2009).

    [30] A. Pantellini et al. GaN-on-silicon evaluation for high-power MMIC applications, 223-227(2012).

    [31] D. F. Feezell et al. Development of nonpolar and semipolar InGaN/GaN visible light-emitting diodes. MRS Bull., 34, 318-323(2009).

    [32] S. Zhou et al. High power GaN-based LEDs with low optical loss electrode structure. Opt. Laser Technol., 54, 321-325(2013).

    [33] X. Dai et al. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett., 15, 6958-6964(2015).

    [34] R. W. Martin et al. Exciton localization and the Stokes’ shift in InGaN epilayers. Appl. Phys Lett., 74, 263-265(1999).

    [35] R. Zheng, T. Taguchi. Stokes shift in InGaN epitaxial layers. Appl. Phys. Lett., 77, 3024-3026(2000).

    [36] Y. Wang et al. Full-duplex light communication with a monolithic multicomponent system. Light Sci. Appl., 7, 1-7(2018).

    [37] X. An et al. Ultrafast miniaturized GaN-based optoelectronic proximity sensor. Photonics Res., 10, 1964-1970(2022).

    [38] J. Yuan et al. GaN directional couplers for on-chip optical interconnect. Semicond. Sci. Technol., 32, 045001(2017).

    [39] M. Feng et al. On-chip integration of GaN-based laser, modulator, and photodetector grown on Si. IEEE J. Sel. Top. Quantum Electron., 24, 1-5(2018).

    [40] M. Xie et al. Uniting a III‐nitride transmitter, waveguide, modulator, and receiver on a single chip. Adv. Eng. Mater., 23, 2100582(2021).

    [41] C. Shen et al. High-modulation-efficiency, integrated waveguide modulator–laser diode at 448 nm. ACS Photonics, 3, 262-268(2016).

    [42] G. T. Reed et al. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [43] J. E. Roth et al. Optical modulator on silicon employing germanium quantum wells. Opt. Express, 15, 5851-5859(2007).

    [44] Y. Rong et al. Quantum-confined Stark effect in Ge/SiGe quantum wells on Si. IEEE J. Sel. Top. Quantum Electron., 16, 85-92(2009).

    [45] Y. Kuo et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 437, 1334-1336(2005).

    Jiabin Yan, Li Fang, Zhihang Sun, Hao Zhang, Jialei Yuan, Yan Jiang, Yongjin Wang. Complete active–passive photonic integration based on GaN-on-silicon platform[J]. Advanced Photonics Nexus, 2023, 2(4): 046003
    Download Citation