• Photonics Research
  • Vol. 9, Issue 8, 1559 (2021)
Binhai Yu1, Shunming Liang1, Fengyi Zhang1, Zongtao Li1、2, Bin Liu3, and Xinrui Ding1、*
Author Affiliations
  • 1National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China
  • 2Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd., Foshan 528000, China
  • 3Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/PRJ.427066 Cite this Article Set citation alerts
    Binhai Yu, Shunming Liang, Fengyi Zhang, Zongtao Li, Bin Liu, Xinrui Ding. Water-stable CsPbBr3 perovskite quantum-dot luminous fibers fabricated by centrifugal spinning for dual white light illumination and communication[J]. Photonics Research, 2021, 9(8): 1559 Copy Citation Text show less
    References

    [1] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015).

    [2] M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358, 745-750(2017).

    [3] X. Gong, M. Li, X. B. Shi, H. Ma, Z. K. Wang, L. S. Liao. Controllable perovskite crystallization by water additive for high-performance solar cells. Adv. Funct. Mater., 25, 6671-6678(2015).

    [4] J. Z. Song, J. H. Li, X. M. Li, L. M. Xu, Y. H. Dong, H. B. Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater., 27, 7162-7167(2015).

    [5] Z. T. Li, K. Cao, J. S. Li, X. W. Du, Y. Tang, B. H. Yu. Modification of interface between PEDOT:PSS and perovskite film inserting an ultrathin LiF layer for enhancing efficiency of perovskite light-emitting diodes. Org. Electron., 81, 105675(2020).

    [6] H. M. Zhu, Y. P. Fu, F. Meng, X. X. Wu, Z. Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636-642(2015).

    [7] S. F. Leung, K. T. Ho, P. K. Kung, V. K. S. Hsiao, H. N. Alshareef, Z. L. Wang, J. H. He. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater., 30, 1704611(2018).

    [8] R. H. Liu, J. Q. Zhang, H. Zhou, Z. H. Song, Z. N. Song, C. R. Grice, D. J. Wu, L. P. Shen, H. Wang. Solution-processed high-quality cesium lead bromine perovskite photodetectors with high detectivity for application in visible light communication. Adv. Opt. Mater., 8, 1901735(2020).

    [9] N. Strobel, N. Droseros, W. Kontges, M. Seiberlich, M. Pietsch, S. Schlisske, F. Lindheimer, R. R. Schroder, U. Lemmer, M. Pfannmoller, N. Banerji, G. Hernandez-Sosa. Color-selective printed organic photodiodes for filterless multichannel visible light communication. Adv. Mater., 32, 1908258(2020).

    [10] W. H. Li, S. B. Li, L. Duan, H. J. Chen, L. D. Wang, G. F. Dong, Z. Y. Xu. Squarylium and rubrene based filterless narrowband photodetectors for an all-organic two-channel visible light communication system. Org. Electron., 37, 346-351(2016).

    [11] E. Lopez-Fraguas, B. Arredondo, C. Vega-Colado, G. del Pozo, M. Najafi, D. Martin-Martin, Y. Galagan, J. M. Sanchez-Pena, R. Vergaz, B. Romero. Visible light communication system using an organic emitter and a perovskite photodetector. Org. Electron., 73, 292-298(2019).

    [12] Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu, J. Feldmann. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., 55, 13887-13892(2016).

    [13] S. L. Mei, X. Y. Liu, W. L. Zhang, R. Liu, L. R. Zheng, R. Q. Guo, P. F. Tian. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces, 10, 5641-5648(2018).

    [14] S. Jung, J. H. Kim, J. W. Choi, J. W. Kang, S. H. Jin, Y. Kang, M. Song. Enhancement of photoluminescence quantum yield and stability in CsPbBr3 perovskite quantum dots by trivalent doping. Nanomaterials, 10, 710(2020).

    [15] S. L. Mei, B. B. Yang, X. Wei, H. Q. Dai, Z. H. Chen, Z. J. Cui, G. L. Zhang, F. X. Xie, W. L. Zhang, R. Q. Guo. Facile synthesis and optical properties of CsPbX3/ZIF-8 composites for wide-color-gamut display. Nanomaterials, 9, 832(2019).

    [16] Z. T. Li, X. T. Tang, J. D. Yu, Y. Tang, B. H. Yu, Y. L. Hu, B. Liu, X. R. Ding. Lifetime enhancement of a circulated cooling perovskite quantum dots colloidal solution system for laser illuminations. IEEE Access, 7, 136214-136222(2019).

    [17] I. Dursun, C. Shen, M. R. Parida, J. Pan, S. P. Sarmah, D. Priante, N. Alyami, J. Liu, M. I. Saidaminov, M. S. Alias, A. L. Abdelhady, T. K. Ng, O. F. Mohammed, B. S. Ooi, O. M. Bakr. Perovskite nanocrystals as a color converter for visible light communication. ACS Photon., 3, 1150-1156(2016).

    [18] C. H. Lin, C. Y. Kang, A. Verma, T. Z. Wu, Y. M. Pai, T. Y. Chen, C. L. Tsai, Y. Z. Yang, S. K. Sharma, C. W. Sher, Z. Chen, P. T. Lee, S. R. Chung, H. C. Kuo. Ultrawide color gamut perovskite and CdSe/ZnS quantum-dots-based white light-emitting diode with high luminous efficiency. Nanomaterials, 9, 1314(2019).

    [19] H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, A. L. Rogach. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett., 2, 2071-2083(2017).

    [20] B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett., 6, 1543-1547(2015).

    [21] Z. T. Li, C. J. Song, J. S. Li, G. W. Liang, L. S. Rao, S. D. Yu, X. R. Ding, Y. Tang, B. H. Yu, J. Z. Ou, U. Lemmer, G. Gomard. Highly efficient and water-stable lead halide perovskite quantum dots using superhydrophobic aerogel inorganic matrix for white light-emitting diodes. Adv. Mater. Technol., 5, 1900941(2020).

    [22] J. S. Li, Y. Tang, Z. T. Li, X. R. Ding, B. H. Yu, L. W. Lin. Largely enhancing luminous efficacy, color-conversion efficiency, and stability for quantum-dot white LEDs using the two-dimensional hexagonal pore structure of SBA-15 mesoporous particles. ACS Appl. Mater. Interfaces, 11, 18808-18816(2019).

    [23] Y. T. J.-S. Li, Z.-T. Li, J.-X. Li, X.-R. Ding, B.-H. Yu, S.-D. Yu, J.-Z. Ou, H.-C. Kuo. Toward 200 lumens per watt of quantum-dot white-light-emitting diodes by reducing reabsorption loss. ACS Nano, 15, 550-562(2021).

    [24] Y. Wei, X. R. Deng, Z. X. Xie, X. C. Cai, S. S. Liang, P. Ma, Z. Y. Hou, Z. Y. Cheng, J. Lin. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv. Funct. Mater., 27, 1703535(2017).

    [25] P. G. Papagiorgis, A. Manoli, A. Alexiou, P. Karacosta, X. Karagiorgis, G. Papaparaskeva, C. Bernasconi, M. I. Bodnarchuk, M. V. Kovalenko, T. Krasia-Christoforou, G. Itskos. Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters. Front. Chem., 7, 87(2019).

    [26] L. H. Meng, C. G. Yang, J. J. Meng, Y. Z. Wang, Y. Ge, Z. Q. Shao, G. F. Zhang, A. L. Rogach, H. Z. Zhong. In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: shape tuning and polarized emission. Nano Res., 12, 1411-1416(2019).

    [27] H. Liao, S. B. Guo, S. Cao, L. Wang, F. M. Gao, Z. B. Yang, J. J. Zheng, W. Y. Yang. A general strategy for in situ growth of all-inorganic CsPbX3 (X = Br, I, and Cl) perovskite nanocrystals in polymer fibers toward significantly enhanced water/thermal stabilities. Adv. Opt. Mater., 6, 1800346(2018).

    [28] H. H. Zhang, D. F. Fu, Z. T. Du, H. Fu, G. Shao, W. Y. Yang, J. J. Zheng. In situ growth of aligned CsPbBr3 nanorods in polymer fibers with tailored aspect ratios. Ceram. Int., 46, 18352-18357(2020).

    [29] D. H. Jiang, S. Kobayashi, C. C. Jao, Y. Mato, T. Isono, Y. H. Fang, C. C. Lin, T. Satoh, S. H. Tung, C. C. Kuo. Light down-converter based on luminescent nanofibers from the blending of conjugated rod-coil block copolymers and perovskite through electrospinning. Polymers, 12, 84(2020).

    [30] X. Lu, Y. Hu, J. Z. Guo, C. F. Wang, S. Chen. Fiber-spinning-chemistry method toward in situ generation of highly stable halide perovskite nanocrystals. Adv. Sci., 6, 1901694(2019).

    [31] T. T. Cui, Z. J. Zhu, R. Cheng, Y. L. Tong, G. Peng, C. F. Wang, S. Chen. Facile access to wearable device via microfluidic spinning of robust and aligned fluorescent microfibers. ACS Appl. Mater. Interfaces, 10, 30785-30793(2018).

    [32] L. Y. Ron, S. P. Kotha. Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett., 117, 153-157(2014).

    [33] L. K. Hromadko, E. Koudelkova, R. Bulanek, J. M. Macak. SiO2 fibers by centrifugal spinning with excellent textural properties and water adsorption performance. ACS Omega, 2, 5052-5059(2017).

    [34] M. R. Badrossamay, H. A. McIlwee, J. A. Goss, K. K. Parker. Nanofiber assembly by rotary jet-spinning. Nano Lett., 10, 2257-2261(2010).

    [35] A. Barhoum, K. Pal, H. Rahier, H. Uludag, I. S. Kim, M. Bechelany. Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today, 17, 1-35(2019).

    [36] E. Ercan, P.-C. Tsai, J.-Y. Chen, J.-Y. Lam, L.-C. Hsu, C.-C. Chueh, W.-C. Chen. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl. Mater. Interfaces, 11, 23605-23615(2019).

    [37] B. H. L. Yu, S. Liang, X. Ding, Z. Li, Y. Tang. A sandwich structure light-trapping fluorescence antenna with large field of view for visible light communication. IEEE Trans. Electron Dev., 68, 565-571(2021).

    [38] A. Loiudice, S. Saris, E. Oveisi, D. T. L. Alexander, R. Buonsanti. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem., 56, 10696-10701(2017).

    [39] L. S. Rao, Y. Tang, C. J. Song, K. Xu, E. T. Vickers, S. B. Naghadeh, X. R. Ding, Z. T. Li, J. Z. Zhang. Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication. Chem. Mater., 31, 365-375(2019).

    [40] V. S. Chirvony, S. Gonzalez-Carrero, I. Suarez, R. E. Galian, M. Sessolo, H. J. Bolink, J. P. Martinez-Pastor, J. Perez-Prieto. Delayed luminescence in lead halide perovskite nanocrystals. J. Phys. Chem. C, 121, 13381-13390(2017).

    [41] V. Malgras, J. Henzie, T. Takei, Y. Yamauchi. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films. Angew. Chem., 57, 8881-8885(2018).

    [42] S. N. Raja, Y. Bekenstein, M. A. Koc, S. Fischer, D. Zhang, L. Lin, R. O. Ritchie, P. Yang, A. P. Alivisatos. Encapsulation of perovskite nanocrystals into macroscale polymer matrices: enhanced stability and polarization. ACS Appl. Mater. Interfaces, 8, 35523-35533(2016).

    [43] Y. Wei, Z. Y. Cheng, J. Lin. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev., 48, 310-350(2019).

    [44] S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan, L. Li. Morphology evolution and degradation of CsPbBr3 nanocrystals under blue light-emitting diode illumination. ACS Appl. Mater. Interfaces, 9, 7249-7258(2017).

    [45] J. B. You, Y. M. Yang, Z. R. Hong, T. B. Song, L. Meng, Y. S. Liu, C. Y. Jiang, H. P. Zhou, W. H. Chang, G. Li, Y. Yang. Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett., 105, 183902(2014).

    [46] Y. Liu, F. Li, Q. Liu, Z. Xia. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater., 30, 6922-6929(2018).

    [47] L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen, Q. Zhong, D. Yang, Q. Liu, Y. Zhao, B. Sun, Q. Zhang, Y. Yin. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett., 17, 5799-5804(2017).

    [48] Z. Liu, Y. Bekenstein, X. Ye, S. C. Nguyen, J. Swabeck, D. Zhang, S.-T. Lee, P. Yang, W. Ma, A. P. Alivisatos. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc., 139, 5309-5312(2017).

    [49] Y. N. Chen, M. H. He, J. J. Peng, Y. Sun, Z. Q. Liang. Structure and growth control of organic-inorganic halide perovskites for optoelectronics: from polycrystalline films to single crystals. Adv. Sci., 3, 1500392(2016).

    [50] H. Huang, B. K. Chen, Z. G. Wang, T. F. Hung, A. S. Susha, H. Z. Zhong, A. L. Rogach. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci., 7, 5699-5703(2016).

    [51] T. T. Xuan, X. F. Yang, S. Q. Lou, J. J. Huang, Y. Liu, J. B. Yu, H. L. Li, K. L. Wong, C. X. Wang, J. Wang. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale, 9, 15286-15290(2017).

    [52] K. Z. Ma, X. Y. Du, Y. W. Zhang, S. Chen. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J. Mater. Chem. C, 5, 9398-9404(2017).

    [53] Y. H. Song, J. S. Yoo, B. K. Kang, S. H. Choi, E. K. Ji, H. S. Jung, D. H. Yoon. Long-term stable stacked CsPbBr3 quantum dot films for highly efficient white light generation in LEDs. Nanoscale, 8, 19523-19526(2016).

    [54] C. C. Lin, D. H. Jiang, C. C. Kuo, C. J. Cho, Y. H. Tsai, T. Satoh, C. Su. Water-resistant efficient stretchable perovskite-embedded fiber membranes for light-emitting diodes. ACS Appl. Mater. Interfaces, 10, 2210-2215(2018).

    [55] Y. Li, Y. Lv, Z. Q. Guo, L. B. Dong, J. H. Zheng, C. F. Chai, N. Chen, Y. J. Lu, C. Chen. One-step preparation of long-term stable and flexible CsPbBr3 perovskite quantum dots/ethylene vinyl acetate copolymer composite films for white light-emitting diodes. ACS Appl. Mater. Interfaces, 10, 15888-15894(2018).

    [56] Y. C. Wong, J. D. Ng, Z. K. Tan. Perovskite-initiated photopolymerization for singly dispersed luminescent nanocomposites. Adv. Mater., 30, 1800774(2018).

    [57] D. H. Jiang, Y. H. Tsai, L. Veeramuthu, F. C. Liang, L. C. Chen, C. C. Lin, T. Satoh, S. H. Tung, C. C. Kuo. Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots-polymer nanofibers through biaxial electrospinning. APL Mater., 7, 111105(2019).

    [58] J. Hai, H. Li, Y. Zhao, F. J. Chen, Y. Peng, B. D. Wang. Designing of blue, green, and red CsPbX3 perovskitecodoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem. Commun., 53, 5400-5403(2017).

    [59] Y. L. Zhang, M. J. Jiang, T. Han, X. T. Xiao, W. L. Chen, L. Wang, K. S. Wong, R. Wang, K. Wang, B. Z. Tang, K. S. Wu. Aggregation-induced emission luminogens as color converters for visible-light communication. ACS Appl. Mater. Interfaces, 10, 34418-34426(2018).

    [60] S. Liang. Original optical data of PQD-PS fibers(2021).

    Binhai Yu, Shunming Liang, Fengyi Zhang, Zongtao Li, Bin Liu, Xinrui Ding. Water-stable CsPbBr3 perovskite quantum-dot luminous fibers fabricated by centrifugal spinning for dual white light illumination and communication[J]. Photonics Research, 2021, 9(8): 1559
    Download Citation