• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210826 (2022)
Peng Zhu, Lei Xiao, Tai Sun, and Haofei Shi*
Author Affiliations
  • Micro-nano Manufacturing and System Integration Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • show less
    DOI: 10.3788/IRLA20210826 Cite this Article
    Peng Zhu, Lei Xiao, Tai Sun, Haofei Shi. Research progress of micro-nano structures enhanced infrared detectors (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210826 Copy Citation Text show less
    References

    [1] J Wang, H Fang, X Wang, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small, 13, 1700894(2017).

    [2] X Guan, X Yu, D Periyanagounder, et al. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures. Advanced Optical Materials, 9, 2001708(2021).

    [3] X Hu, J Wu, M Wu, et al. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Research, 1-13(2021152).

    [4] F Jiang, M Shi, J Zhou, et al. Integrated photonic structure enhanced infrared photodetectors. Advanced Photonics Research, 2, 2000187(2021).

    [5] T Zhang, S J Wang, X Y Zhang, et al. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization. Frontiers of Chemical Science and Engineering, 15, 35-48(2021).

    [6] F Zhuge, Z Zheng, P Luo, et al. Nanostructured materials and architectures for advanced infrared photodetection. Advanced Materials Technologies, 2, 1700005(2017).

    [7] J V Anguita, M Ahmad, S Haq, et al. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers. Science Advances, 2(2), e1501238(2016).

    [8] H Wang, H Zhen, S Li, et al. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors. Science Advances, 2, e1600027(2016).

    [9] X Lin, Z Y Ding, W P Wang, et al. Investigation on the operation enhancement of HgCdTe photon-trapping detector. Laser & Infrared, 47, 1510-1515(2017).

    [10] S C Lee, S Krishna, S R J Brueck, et al. Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors. Applied Physics Letters, 97, 21112(2010).

    [11] A Oay, A Avt, A Vvk, et al. Planar plasmonic nanocavity for efficient enhancement of photoluminescence of molecular emitters. Optical Materials, 94, 348-355(2019).

    [12] S C Lee, S Krishna, S R J Brueck, et al. Beyond the yablonovitch limit: Trapping light by frequency shift. Applied Physics Letters, 98, 71107(2011).

    [13] A Prajapati, A Chauhan, D Keizman, et al. Approaching the Yablonovitch limit with free-floating arrays of subwavelength trumpet non-imaging light concentrators driven by extraordinary low transmission. Nanoscale, 11, 3681-3688(2019).

    [14] S Yokogawa, I Oshiyama, H Ikeda, et al. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels. Sci Rep, 7, 3832(2017).

    [15] Z Fang. Plasmonic silicon quantum dots extend photodetection into mid-infrared range. Science Bulletin, 8-9(201762).

    [16] J Tong, L Tobing, Y Luo, et al. Single plasmonic structure enhanced dual-band room temperature infrared photodetection. Scientific Reports, 8, 1548(2018).

    [17] W D Hu, H Ge, R Xie, et al. Skin effect photon-trapping enhancement in infrared photodiodes. Optics Express, 29, 22823-22837(2021).

    [18] Z H Ye, P Zhang, Y Li, et al. Photon trapping photodiode design in HgCdTe mid-wavelength infrared focal plane array detectors. Optical & Quantum Electronics, 46, 1385-1390(2014).

    [19] H Cansizoglu, C Bartolo-Perez, Y Gao, et al. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm. Photonics Research, 6, 734-742(2018).

    [20] K Zang, X Jiang, Y Huo, et al. Silicon single-photon avalanche diodes with nano-structured light trapping. Nature Communications, 8, 628(2017).

    [21] J Yang, L Tang, W Luo, et al. Light trapping in conformal graphene/silicon nanoholes for high performance photodetectors. ACS Applied Materials & Interfaces, 11, 30421-30429(2019).

    [22] Y Gao, H Cansizoglu, K G Polat, et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nature Photonics, 11, 301-308(2017).

    [23] C Bartolo-Perez, W Qarony, S Ghandiparsi, et al. Maximizing absorption in photon trapping ultra-fast silicon photodetectors. Advanced Photonics Research, 2, 2000190(2021).

    [24] J Wehner, E Smith, G M Venzor, et al. HgCdTe photon trapping structure for broadband mid-wavelength infrared absorption. Journal of Electronic Materials, 40, 1840-1846(2011).

    [25] J Schuster, E Bellotti. Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays. Optics Express, 21, 14712-14727(2013).

    [26] L B Luo, L H Zeng, X Chao, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Scientific Reports, 4(1), 3914(2014).

    [27] L Linbao, W Di, X Chao, et al. PdSe2 multilayer on germanium nanocones array with light trapping effect for sensitive infrared photodetector and image sensing application. Advanced Functional Materials, 29, 1900849(2019).

    [28] J Q Liu, G Yang, G Wu, et al. Silicon/perovskite core-shell heterojunctions with light trapping effect for sensitive self-driven NIR photodetectors. ACS Applied Materials & Interfaces, 10, 27850-27857(2018).

    [29] L Ning, T H Jiang, Z B Shao, et al. Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. Journal of Materials Chemistry C Materials for Optical & Electronic Devices, 6, 7077-7084(2018).

    [30] L Nordin, K Li, A Briggs, et al. Enhanced emission from ultra-thin long wavelength infrared superlattices on epitaxial plasmonic materials. Applied Physics Letters, 116, 021102(2020).

    [31] J Yang, Z Zhu, J Zhang, et al. Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires. Optics Express, 26, 20174-20182(2018).

    [32] J Meng, J J Cadusch, K B Crozier. Plasmonic mid-infrared filter array-detector array chemical classifier based on machine learning. ACS Photonics, 8, 648-657(2021).

    [33] J A Nolde, M Kim, C S Kim, et al. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings. Applied Physics Letters, 106, 261109(2015).

    [34] F Cheng, X Yang, J Gao. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials. Scientific Reports, 5, 14327(2015).

    [35] F Mao, J Xie, S Xiao, et al. Plasmonic light harvesting for multicolor infrared thermal detection. Optics Express, 21, 295(2013).

    [36] R Jessie, R V Shenoi, K Sanjay, et al. Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors. Optics Express, 18, 3672-3686(2010).

    [37] W Wei, A Bonakdar, H Mohseni. Plasmonic enhanced quantum well infrared photodetector with high detectivity. Applied Physics Letters, 96, 667(2010).

    [38] B Zheng, H Zhao, A Manjavacas, et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications, 6, 7797(2015).

    [39] F Xia, H Wang, D Xiao, et al. Two-dimensional material nanophotonic. Nature Photonics, 8, 899-907(2014).

    [40] P Narang, R Sundararaman, H A Atwater. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics, 5, 96-111(2016).

    [41] M L Brongersma, N J Halas, P Nordlander. Plasmon-induced hot carrier science and technology. Nature Nanotechnology, 10, 25-34(2015).

    [42] W Wang, A Klots, D Prasai, et al. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Letters, 15, 7440-7444(2015).

    [43] M W Knight, H Sobhani, P Nordlander, et al. Photodetection with active optical antennas. Science, 332, 702-704(2011).

    [44] H Chalabi, D Schoen, M L Brongersma. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Letters, 14, 1374-1380(2014).

    [45] B Feng, J Zhu, L U Bingrui, et al. Achieving infrared detection by all-Si plasmonic hot-electron detectors with high detectivity. ACS Nano, 13, 8433-8441(2019).

    [46] W Li, J Valentine. Metamaterial perfect absorber based hot electron photodetection. Nano Letters, 14, 3510-3514(2012).

    [47] P Bouchon, C Koechlin, F Pardo, et al. Wideband omni-directional infrared absorber with a patchwork of plasmonic nanoantennas. Optics Letters, 37, 1038(2012).

    [48] Cui, X Y, J Xu, K H Fung, et al. A thin film broadband absorber based on multi-sized nanoantennas.. Applied Physics Letters, 99, 253101(2011).

    [49] R Feng, W Ding, L Liu, et al. Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array. Optics Express, 22, A335-A343(2014).

    [50] M Goldflam, E A Kadlec, B V Olson, et al. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers. Applied Physics Letters, 109, 251103(2016).

    [51] J A Montoya, Z B Tian, S Krishna, et al. Ultra-thin infrared metamaterial detector for multicolor imaging applications. Optics Express, 25, 23343(2017).

    [52] Y L Jing, Z F Li, Q Li, et al. Pixel-level plasmonic microcavity infrared photodetector. Scientific Reports, 6, 25849(2016).

    [53] J Li, J Z Li, H Zhou, et al. Plasmonic metamaterial absorbers upon strong coupling effects for small pixel infrared detector. Optics Express, 29, 22907-22921(2021).

    [54] S Guo, J Deng, J Zhou, et al. Combined role of polarization matching and critical coupling in enhanced absorption of 2 D materials based on metamaterials. Optics Express, 29, 9269-9282(2021).

    [55] K Zhou, Q Cheng, L Lu, et al. Dual-band tunable narrowband near-infrared light trapping control based on a hybrid grating-based Fabry–Perot structure. Optics Express, 28, 1647-1656(2020).

    [56] R Audhkhasi, M L Povinelli. Gold-black phosphorus nano-structured absorbers for efficient light trapping in the mid-infrared. Optics Express, 28, 19562-19570(2020).

    [57] J R Felts, S Law, C M Roberts, et al. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Applied Physics Letters, 102, 152110(2013).

    [58] S Law, R Liu, D Wasserman. Doped semiconductors with band-edge plasma frequencies. Journal of Vacuum Science & Technology B, 32, 052601(2014).

    [59] X Qian, S Vangala, D Wasserman, et al. High-optical-quality nanosphere lithographically formed InGaAs quantum dots using molecular beam epitaxy assisted GaAs mass transport and overgrowth. Journal of Vacuum Science & Technology B, 28, C3C9-C3C14(2010).

    [60] X Xu, H Kwon, S Finch, et al. Reflecting metagrating-enhanced thin-film organic light emitting devices. Applied Physics Letters, 118, 053302(2021).

    [61] L Nordin, A Kamboj, P Petluru, et al. All-epitaxial integration of long-wavelength infrared plasmonic materials and detectors for enhanced responsivity. ACS Photonics, 7, 1950-1956(2020).

    [62] S H Wang, N Yoon, A Kamboj, et al. Ultra-thin enhanced-absorption long-wave infrared detectors. Applied Physics Letters, 112, 091104(2018).

    [63] A Kamboj, L Nordin, P Petluru, et al. All-epitaxial guided-mode resonance mid-wave infrared detectors. Applied Physics Letters, 118, 201102(2021).

    CLP Journals

    [1] Hongwei Gao, Zhongming Yang, Hongbo Liu, Xingang Zhuang, Zhaojun Liu. Design of portable infrared target simulator system[J]. Infrared and Laser Engineering, 2023, 52(3): 20220554

    Peng Zhu, Lei Xiao, Tai Sun, Haofei Shi. Research progress of micro-nano structures enhanced infrared detectors (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210826
    Download Citation