• Photonics Research
  • Vol. 5, Issue 4, 305 (2017)
Md Rezwanul Haque Khandokar1、2、*, Masuduzzaman Bakaul1、3, Md Asaduzzaman1、2, Stan Skafidas1, and Thas Nirmalathas1
Author Affiliations
  • 1Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
  • 2Data 61/Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
  • 3School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
  • show less
    DOI: 10.1364/PRJ.5.000305 Cite this Article Set citation alerts
    Md Rezwanul Haque Khandokar, Masuduzzaman Bakaul, Md Asaduzzaman, Stan Skafidas, Thas Nirmalathas. Characterization of geometry and depleting carrier dependence of active silicon waveguide in tailoring optical properties[J]. Photonics Research, 2017, 5(4): 305 Copy Citation Text show less
    References

    [1] C. Kopp, S. Bernabe, B. Ben Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann. Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron., 17, 498-509(2011).

    [2] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678-1687(2006).

    [3] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [4] K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, M. Lipson. Deposited silicon high-speed integrated electro-optic modulator. Opt. Express, 17, 5118-5124(2009).

    [5] C. E. Png, G. H. Park, S. T. Lim, E. P. Li, A. J. Danner, K. Ogawa, Y. T. Tan. Electrically controlled silicon-based photonic crystal chromatic dispersion compensator with ultralow power consumption. Appl. Phys. Lett., 93, 061111(2008).

    [6] J. Guo, S. Tantawi, M. Park. Active RF pulse compression using electrically controlled semiconductor switches. 12th Workshop Advanced Accelerator Concepts(2006).

    [7] I. Pelant, T. Ostatnick, J. Valenta, K. Luterov, E. Skopalov, T. Mates, R. G. Elliman. Waveguide cores containing silicon nanocrystals as active spectral filters for silicon-based photonics. Appl. Phys. B, 83, 87-91(2006).

    [8] M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, F. Priolo. Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides. Appl. Phys. Lett., 89, 241114(2006).

    [9] A. Lupu, D. Marris, D. Pascal, J.-L. Cercus, A. Cordat, V. Le Thanh, S. Laval. Experimental evidence for index modulation by carrier depletion in SiGe/Si multiple quantum well structures. Appl. Phys. Lett., 85, 887-889(2004).

    [10] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express, 14, 4357-4362(2006).

    [11] L. Zhang, Y. Yue, R. G. Beausoleil, A. E. Willner. Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators. Opt. Express, 19, 8102-8107(2011).

    [12] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, T. Franck. High speed silicon Mach-Zehnder modulator. Opt. Express, 13, 3129-3135(2005).

    [13] W. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov. Ultra compact, low RF power, 10  Gb/s silicon Mach-Zehnder modulator. Opt. Express, 15, 17106-17113(2007).

    [14] D. Marris-Morini, L. Vivien, G. Rasigade, J.-M. Fedeli, E. Cassan, X. Le Roux, P. Crozat, S. Maine, A. Lupu, P. Lyan, P. Rivallin, M. Halbwax, S. Laval. Recent progress in high-speed silicon-based optical modulators. Proc. IEEE, 97, 1199-1215(2009).

    [15] J.-S. Li. Novel optical modulator using silicon photonic crystals. Opt. Laser Technol., 40, 790-794(2008).

    [16] B. Mardiana, S. Shaari, P. S. Menon, H. Hazura, A. R. Hanim, H. Abdullah. Effect of doping position on the active silicon-on-insulator micro-ring resonator based on free carrier injection. Am. J. Appl. Sci., 9, 1527-1533(2012).

    [17] Y. Zhao, H. Shao, T. Hu, P. Yu, J. Yang, M. Wang, X. Jiang. A silicon quasi-DOS based on reverse-biased pn diode. Microw. Opt. Technol. Lett., 54, 635-638(2012).

    [18] X.-L. Huang, C.-T. Zheng, C.-L. Sun, C.-T. Li, Y.-D. Wang, D.-M. Zhang. Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide. Opt. Quantum Electron., 47, 3783-3803(2015).

    [19] M. Lipson. Switching light on a silicon chip. Opt. Mater., 27, 731-739(2005).

    [20] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab. Active control of slow light on a chip with photonic crystal waveguides. Nature, 438, 65-69(2005).

    [21] R. Hayakawa, N. Ishikura, H. C. Nguyen, T. Baba. High-speed delay tuning of slow light in pin-diode-incorporated photonic crystal waveguide. Opt. Lett., 38, 2680-2682(2013).

    [22] A. Irace, G. Breglio, A. Cutolo. Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating. Opt. Commun., 221, 313-316(2013).

    [23] M. N. Ebrahimy, H. Orafaei, A. Andalib, H. Alipuor-Banaei. Low power Electro-optical filter: constructed using silicon nanobeam resonator and PIN junction. Physica E, 70, 40-45(2015).

    [24] R. Sharma, M. W. Puckett, H.-H. Lin, F. Vallini, Y. Fainman. Characterizing the effects of free carriers in fully-etched, dielectric-clad silicon waveguides. Appl. Phys. Lett., 106, 241104(2015).

    [25] L. Vina, M. Cardona. Effect of heavy doping on the optical properties and the band structure of silicon. Phys. Rev. B, 29, 6739-6751(1984).

    [26] D. W. Zheng, B. T. Smith, J. Dong, M. Asghari. On the effective carrier lifetime of a silicon p-i-n diode optical modulator. Semicond. Sci. Technol., 23, 064006(2008).

    [27] T. Srivastava, R. Das, R. Jha. On the high performance of channel photonic crystal waveguide comprising different plasmonic active metals. Appl. Phys. B, 108, 629-634(2012).

    [28] J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. Wu, X. Wang, S. Zou, F. Gan. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. J. Lightwave Technol., 31, 4119-4125(2013).

    [29] J. Wang, L. Zhou, H. Zhu, R. Yang, Y. Zhou, L. Liu, T. Wang, J. Chen. Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode. Photon. Res., 3, 58-62(2015).

    [30] H. Hazura, A. R. Hanim, B. Mardiana, S. Shaari, P. S. Menon. Free carrier absorption loss of p-i-n silicon-on-insulator (SOI) phase modulator. AIP Conf. Proc., 1341, 241-244(2011).

    [31] K. Ogawa, K. Tomiyama, Y. Tsong Tan, M. The Doan, Y. M. Bin, D.-L. Kwong, S. Yamada, J. B. Cole, Y. Katayama, H. Mizuta, S. Oda. Broadband variable chromatic dispersion in photonic-band electro-optic waveguide. Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference(2006).

    [32] A. Hosseini, X. Xu, H. Subbaraman, C.-Y. Lin, S. Rahimi, R. T. Chen. Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator. Opt. Express, 20, 12318-12325(2012).

    [33] R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, M. Asaduzzaman. Performance of planar, rib, and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss. IEEE J. Sel. Top. Quantum Electron., 22, 73-80(2016).

    [34] B. R. Bennett, R. A. Soref, J. A. Del Alamo. Carrier-induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J. Quantum Electron., 26, 113-122(1990).

    [35] T. S. Moss, G. J. Burrell, B. Ellis. Semiconductor Opto-electronics, 48-94(1973).

    [36] L. P. Zverev, S. A. Negashev, V. V. Kruzhaev, G. M. Minkov. Mechanism of band gap variation in heavily doped gallium arsenide. Sov. Phys., 11, 603-605(1977).

    [37] R. A. Soref, B. R. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [38] C. H. Henry, R. A. Logan, K. A. Bertness. Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers. J. Appl. Phys., 52, 4457-4461(1981).

    [39] D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, S. Laval. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Opt. Express, 16, 334-339(2008).

    [40] . Lumerical Mode Solutions.

    [41] Z. Zhu, T. G. Brown. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Express, 10, 853-864(2002).

    [42] S. Sze, K. Ng. Physics of Semiconductor Devices(1981).

    [43] D. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. V. Thourhout, S. Keyvaninia, S. K. Selvaraja. Silicon photonic integration platform-have we found the sweet spot?. IEEE J. Sel. Top. Quantum Electron., 20, 189-205(2014).

    [44] C. E. Png, M. J. Sun, S. T. Lim, T. Y. L. Ang, K. Ogawa. Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters. IEEE J. Sel. Top. Quantum Electron., 22, 99-106(2016).

    Md Rezwanul Haque Khandokar, Masuduzzaman Bakaul, Md Asaduzzaman, Stan Skafidas, Thas Nirmalathas. Characterization of geometry and depleting carrier dependence of active silicon waveguide in tailoring optical properties[J]. Photonics Research, 2017, 5(4): 305
    Download Citation