• Photonics Research
  • Vol. 10, Issue 2, 407 (2022)
Yunho Shin1, Yingfei Jiang1, Qian Wang1, Ziyuan Zhou1, Guangkui Qin2, and Deng-Ke Yang1、3、*
Author Affiliations
  • 1Materials Science Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, USA
  • 2BOE Technology Group Co., Beijing, China
  • 3Department of Physics, Kent State University, Kent, Ohio 44242, USA
  • show less
    DOI: 10.1364/PRJ.426780 Cite this Article Set citation alerts
    Yunho Shin, Yingfei Jiang, Qian Wang, Ziyuan Zhou, Guangkui Qin, Deng-Ke Yang. Flexoelectric-effect-based light waveguide liquid crystal display for transparent display[J]. Photonics Research, 2022, 10(2): 407 Copy Citation Text show less
    References

    [1] J. F. Wager. Transparent electronics. Science, 300, 1245-1246(2003).

    [2] C. W. Hsu, B. Zhen, W. Qiu, O. Shapira, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić. Transparent displays enabled by resonant nanoparticle scattering. Nat. Commun., 5, 3152(2014).

    [3] A. Moheghi, M. Kashima, Q. Qin, Y. Dong, D.-K. Yang. 54.3: PSCT for switchable transparent liquid crystal displays. SID Symp. Dig. Tech. Pap., 46, 817-820(2015).

    [4] Y.-H. Shin, Y. Jin, N.-S. Oh, C.-W. Jeon, S.-B. Kwon. A normally transparent polymer dispersed liquid crystal developed by using a two-step UV exposure method for transparent flexible displays. Sci. Adv. Mater., 8, 369-375(2016).

    [5] C. Il Park, M. Seong, M. A. Kim, D. Kim, H. Jung, M. Cho, S. H. Lee, H. Lee, S. Min, J. Kim, M. Kim, J.-H. Park, S. Kwon, B. Kim, S. J. Kim, W. Park, J.-Y. Yang, S. Yoon, I. Kang. World’s first large size 77-inch transparent flexible OLED display. J. Soc. Inf. Disp., 26, 287-295(2018).

    [6] S. H. Shin, B. Hwang, Z. J. Zhao, S. H. Jeon, J. Y. Jung, J. H. Lee, B. K. Ju, J. H. Jeong. Transparent displays utilizing nanopatterned quantum dot films. Sci. Rep., 8, 2463(2018).

    [7] J. Li, H. K. Bisoyi, J. Tian, J. Guo, Q. Li. Optically rewritable transparent liquid crystal displays enabled by light-driven chiral fluorescent molecular switches. Adv. Mater., 31, 1807751(2019).

    [8] Z. L. Wang. Self-powered nanosensors and nanosystems. Adv. Mater., 24, 280-285(2012).

    [9] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst., 29, 1645-1660(2013).

    [10] H.-K. Kwon, K.-T. Lee, K. Hur, S. H. Moon, M. M. Quasim, T. D. Wilkinson, J.-Y. Han, H. Ko, I.-K. Han, B. Park, B. K. Min, B.-K. Ju, S. M. Morris, R. H. Friend, D.-H. Ko. Optically switchable smart windows with integrated photovoltaic devices. Adv. Energy Mater., 5, 1401347(2015).

    [11] H. Khandelwal, A. P. H. J. Schenning, M. G. Debije. Infrared regulating smart window based on organic materials. Adv. Energy Mater., 7, 1602209(2017).

    [12] D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, S. Yang. A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv. Mater., 27, 2489-2495(2015).

    [13] Y. Jiang, Y. Shin, D.-K. Yang. Dual-mode switchable liquid-crystal window. Phys. Rev. Appl., 12, 054037(2019).

    [14] P. Milgram, H. Takemura, A. Utsumi, F. Kishino. Augmented reality: a class of displays on the reality-virtuality continuum. Proc. SPIE, 2351, 282-292(1995).

    [15] H. Huang, H. Hua. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express, 26, 17578-17590(2018).

    [16] R. Talukder, Y. H. Javed, S.-T. Wu. High performance LCD for augmented reality and virtual reality displays. Liq. Cryst., 46, 920-929(2019).

    [17] B.-W. Yang. Head-up display for automobile. U.S. patent(1997).

    [18] S. Asakawa, H. Tsutsui, Y. Taketomi, E. Okuda. Head up display unit, liquid crystal display panel, and method of fabricating the liquid crystal display panel. U.S. Patent(1999).

    [19] M. Homan. The use of optical waveguides in head up display (HUD) applications. Proc. SPIE, 8736, 87360E(2013).

    [20] P.-G. De Gennes, J. Prost. The Physics of Liquid Crystals, 83(1993).

    [21] L. M. Blinov, V. G. Chigrinov. Electrooptic Effects in Liquid Crystal Materials(1996).

    [22] S. E. Hicks, S. P. Hurley, R. S. Zola, D.-K. Yang. Polymer stabilized VA mode liquid crystal display. J. Disp. Technol., 7, 619-623(2011).

    [23] D.-K. Yang. Fundamentals of Liquid Crystal Devices(2014).

    [24] X. Zhou, G. Qin, Y. Dong, D.-K. Yang. Fast switching and high-contrast polymer-stabilized IPS liquid crystal display. J. Soc. Inf. Disp., 23, 333-338(2015).

    [25] M. Kim, H. S. Jin, S. J. Lee, Y.-H. Shin, H. G. Ham, D.-K. Yang, P. J. Bos, J. H. Lee, S. H. Lee. Liquid crystals for superior electro-optic performance display device with power-saving mode. Adv. Opt. Mater., 6, 1800022(2018).

    [26] D.-K. Yang. Polymer-stabilized liquid crystal displays. Progress in Liquid Crystal Science and Technology: In Honor of Shunsuke Kobayashi’s 80th Birthday, 597-628(2013).

    [27] D. K. Yang, Y. Cui, H. Nemati, X. Zhou, A. Moheghi. Modeling aligning effect of polymer network in polymer stabilized nematic liquid crystals. J. Appl. Phys., 114, 243515(2013).

    [28] Y.-H. Shin, N.-S. Oh, S.-B. Kwon. Electro-optical properties of vertically aligned polymer network liquid crystals for normally transparent light shutters. Mol. Cryst. Liq. Cryst., 644, 130-136(2017).

    [29] J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, B.-G. Wu. Polymer dispersed liquid crystals for display application. Mol. Cryst. Liq. Cryst., 165, 511-532(1988).

    [30] N.-S. Oh, Y.-H. Shin, H.-Y. Kang, S.-B. Kwon. High performance dye-doped emulsion type PDLC for transmittance variable devices. Mol. Cryst. Liq. Cryst., 644, 137-144(2017).

    [31] Y.-H. Shin, N.-S. Oh, S.-B. Kwon. Electro-optical properties of normally transparent polymer dispersed liquid crystal cells with polymer wall and network structure. Mol. Cryst. Liq. Cryst., 647, 415-421(2017).

    [32] J. Jiang, G. McGraw, R. Ma, J. Brown, D.-K. Yang. Selective scattering polymer dispersed liquid crystal film for light enhancement of organic light emitting diode. Opt. Express, 25, 3327-3335(2017).

    [33] H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, M. Tsuchida. Flexible OLED displays using plastic substrates. IEEE J. Sel. Top. Quantum Electron., 10, 107-114(2004).

    [34] B. Geffroy, R. P. Le, C. Prat. Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int., 55, 572-582(2006).

    [35] H. S. Shin, J. K. Jeong, Y. G. Mo, D. U. Jin. Organic light emitting display (OLED) and its method of fabrication. U.S. Patent(2010).

    [36] T. Tsujimura. OLED Display Fundamentals and Applications(2017).

    [37] H.-V. Han, H.-Y. Lin, C.-C. Lin, W.-C. Chong, J.-R. Li, K.-J. Chen, P. Yu, T.-M. Chen, H.-M. Chen, K.-M. Lau, H.-C. Kuo. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express, 23, 32504-32515(2015).

    [38] T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. H. Chen, W. Guo, H.-C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).

    [39] Y. Huang, E. L. Hsiang, M. Y. Deng, S. T. Wu. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl., 9, 1(2020).

    [40] C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Rönnow, M. S. Mattsson, M. Veszelei, G. Vaivars. Recent advances in electrochromics for smart windows applications. Sol. Energy, 63, 199-216(1998).

    [41] A. Azens, C. Granqvist. Electrochromic smart windows: energy efficiency and device aspects. J. Solid State Electrochem., 7, 64-68(2003).

    [42] S. Lin, X. Bai, H. Wang, H. Wang, J. Song, K. Huang, C. Wang, N. Wang, B. Li, M. Lei, H. Wu. Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart Windows. Adv. Mater., 29, 1703238(2017).

    [43] X. Zhou, G. Qin, L. Wang, Z. Chen, X. Xu, Y. Dong, A. Moheghi, D.-K. Yang. Full color waveguide liquid crystal display. Opt. Lett., 42, 3706-3709(2017).

    [44] L. Wang, N. Jia, L. Duan, T. Sun, Z. Liu, J. Fang, M. Hou, X. Liu, Y. Shi, Y. Li, X. Zhou, Y. Shin, G. Qin, S. Kim, X. Li, Y. Peng, S. Zhang, F. Yang, J. Sun, Q. Liu, B. Kristal, D. Yan. P-89: development of waveguide liquid crystal display for transparent display applications. SID Symp. Dig. Tech. Pap., 50, 1573-1575(2019).

    [45] C. Meng, E. Chen, L. Wang, S. Tang, M. Tseng, J. Guo, Y. Ye, Q. F. Yan, H. Kwok. Color-switchable liquid crystal smart window with multi-layered light guiding structures. Opt. Express, 27, 13098-13107(2019).

    [46] Y. Shin, Q. Wang, G. Qin, D.-K. Yang. P-82: color flexible waveguide display using polymer stabilized liquid crystal. SID Symp. Dig. Tech. Pap., 51, 1664-1667(2020).

    [47] Y. Shin, J. Jiang, G. Qin, Q. Wang, Z. Zhou, D.-K. Yang. Patterned waveguide liquid crystal displays. RSC Adv., 10, 41693-41702(2020).

    [48] N. Éber, P. Salamon, Á. Buka. Electrically induced patterns in nematics and how to avoid them. Liq. Cryst. Rev., 4, 101-134(2016).

    [49] A. Varanytsia, L.-C. Chien. Giant flexoelectro-optic effect with liquid crystal dimer CB7CB. Sci. Rep., 7, 41333(2017).

    [50] Y. Jiang, X. Zhou, Y. Shin, G. Qin, X. Xu, L. Zhou, S. Lee, D.-K. Yang. Image flickering reduction by dimer and polymer stabilization in FFS liquid crystal display. J. Soc. Inf. Disp., 27, 285-294(2019).

    [51] G. Babakhanova, Z. Parsouzi, S. Paladugu, H. Wang, Y. A. Nastishin, S. V. Shiyanovskii, S. Sprunt, O. D. Lavrentovich. Elastic and viscous properties of the nematic dimer CB7CB. Phys. Rev. E, 96, 062704(2017).

    [52] R. J. Mandle, C. T. Archbold, J. P. Sarju, J. L. Andrews, J. W. Goodby. The dependency of nematic and twist-bend mesophase formation on bend angle. Sci. Rep., 6, 36682(2016).

    [53] D.-K. Yang, Y. Shin, Y. Jiang, Q. Wang, Q. Zhou, G. Qin. figshare(2021).

    [54] D.-K. Yang, Y. Shin, Y. Jiang, Q. Wang, Q. Zhou, G. Qin. figshare(2021).

    Yunho Shin, Yingfei Jiang, Qian Wang, Ziyuan Zhou, Guangkui Qin, Deng-Ke Yang. Flexoelectric-effect-based light waveguide liquid crystal display for transparent display[J]. Photonics Research, 2022, 10(2): 407
    Download Citation