• Laser & Optoelectronics Progress
  • Vol. 56, Issue 1, 010001 (2019)
Yanzhen Liu, Guohui Li, Yanxia Cui*, Ting Ji, and Yuying Hao
Author Affiliations
  • Key Laboratory of Advanced Transducers and Intelligent Control System (Ministry of Education), College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 310024, China
  • show less
    DOI: 10.3788/LOP56.010001 Cite this Article Set citation alerts
    Yanzhen Liu, Guohui Li, Yanxia Cui, Ting Ji, Yuying Hao. Research Progress in Perovskite Photodetectors[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010001 Copy Citation Text show less
    References

    [1] Liu W, Ye Z H. Status and trends of foreign infrared photodetectors[J]. Laser & Infrared, 41, 365-370(2011).

    [2] Jansen-van Vuuren R D, Armin A, Pandey A K et al. . Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 28, 4766-4802(2016). http://onlinelibrary.wiley.com/doi/10.1002/adma.201505405/pdf

    [3] Zhou H Y, Li C, Liu Q L et al. Application of laser annealing in silicon photodetectors[J]. Semiconductor Optoelectronics, 37, 36-40, 49(2016).

    [4] Jin L F, Zhang Y T, Wang H Y et al. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chinese Journal of Lasers, 41, 1008002(2014).

    [5] Wang Y, Zhang R. Photodetector characteristics effect on TDLAS gas detection[J]. Acta Optica Sinica, 36, 0230002(2016).

    [6] Yan P Q, Meng W D, Wang Y R et al. Si-APD single-photon detector with high stability based on auto-compensation of temperature drift[J]. Laser & Optoelectronics Progress, 54, 080403(2017).

    [7] Chen M, Zou Y T, Wu L Z et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: from nanocube to ultrathin nanowire[J]. Advanced Functional Materials, 27, 1701121(2017). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201701121/full

    [8] Xing G, Mathews N, Sun S et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 342, 344-347(2013).

    [9] Burschka J, Pellet N, Moon S J et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 499, 316-319(2013). http://pubs.acs.org/servlet/linkout?suffix=ref3/cit3&dbid=8&doi=10.1021%2Fnl500390f&key=23842493

    [10] Nunzi J M. Organic photovoltaic materials and devices[J]. Comptes Rendus Physique, 3, 523-542(2002).

    [11] Tian W M, Zhao C Y, Leng J et al. Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates[J]. Journal of the American Chemical Society, 137, 12458-12461(2015). http://pubs.acs.org/doi/abs/10.1021/jacs.5b08045

    [12] Hu L L, Mandelis A, Yang Z N et al. Temperature- and ligand-dependent carrier transport dynamics in photovoltaic PbS colloidal quantum dot thin films using diffusion-wave methods[J]. Solar Energy Materials and Solar Cells, 164, 135-145(2017).

    [13] Li L G, Zhang F, Hao Y Y et al. High efficiency planar Sn-Pb binary perovskite solar cells: controlled growth of large grains via a one-step solution fabrication process[J]. Journal of Materials Chemistry C, 5, 2360-2367(2017). http://pubs.rsc.org/-/content/articlepdf/2017/tc/c6tc05325d

    [14] Zhang F, Song J, Zhang L X et al. Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment[J]. Journal of Materials Chemistry a, 4, 8554-8561(2016). http://pubs.rsc.org/-/content/articlepdf/2016/ta/c6ta03115c

    [15] Wu R S, Yang B C, Zhang C J et al. Prominent efficiency enhancement in perovskite solar cells employing silica-coated gold nanorods[J]. The Journal of Physical Chemistry C, 120, 6996-7004(2016). http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00309

    [16] Chen J N, Zhou S S, Jin S Y et al. Crystal organometal halide perovskites with promising optoelectronic applications[J]. Journal of Materials Chemistry C, 4, 11-27(2016). http://pubs.rsc.org/en/content/articlehtml/2016/tc/c5tc03417e

    [17] Tian W, Zhou H P, Li L. Hybrid organic-inorganic perovskite photodetectors[J]. Small, 13, 1702107(2017). http://onlinelibrary.wiley.com/doi/10.1002/smll.201702107/full

    [18] Guo H W, Liu R, Wang L R et al. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3[J]. Acta Physica Sinica, 66, 030701(2017).

    [19] Christians J A. Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency ofCH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. Journal of the American Chemical Society, 137, 1530-1538(2015).

    [20] Luan M Y, Liu X Q, Chen F et al. Recent advances in controllable growth of lead halide perovskite crystals[J]. Journal of Henan University(Natural Science), 46, 276-285(2016).

    [21] Ramasamy P, Lim D H, Kim B et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications[J]. Chemical Communications, 52, 2067-2070(2016). http://europepmc.org/abstract/MED/26688424

    [22] Dong D D, Deng H, Hu C et al. Bandgap tunable Csx(CH3NH3)1-xPbI3 perovskite nanowires by aqueous solution synthesis for optoelectronic devices[J]. Nanoscale, 9, 1567-1574(2017). http://europepmc.org/abstract/MED/28067929

    [23] Bekenstein Y, Koscher B A, Eaton S W et al. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies[J]. Journal of the American Chemical Society, 137, 16008-16011(2015). http://pubs.acs.org/doi/10.1021/jacs.5b11199

    [24] Fang Y J, Dong Q F, Shao Y C et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 9, 679-686(2015). http://www.nature.com/abstractpagefinder/10.1038/nphoton.2015.156

    [25] Filip M R, Eperon G E, Snaith H J et al. Steric engineering of metal-halide perovskites with tunable optical band gaps[J]. Nature Communications, 5, 5757(2014). http://europepmc.org/abstract/MED/25502506

    [26] Miller E M, Zhao Y X, Mercado C C et al. Substrate-controlled band positions in CH3NH3PbI3 perovskite films[J]. Physical Chemistry Chemical Physics, 16, 22122-22130(2014). http://www.ncbi.nlm.nih.gov/pubmed/25209217

    [27] Stranks S D, Eperon G E, Grancini G et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 342, 341-344(2013). http://www.ncbi.nlm.nih.gov/pubmed/24136964?dopt=ExternalLink

    [28] Shi D, Adinolfi V, Comin R et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 347, 519-522(2015). http://europepmc.org/abstract/med/25635092

    [29] Dong Q F, Fang Y J, Shao Y C et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3single crystals[J]. Science, 347, 967-970(2015). http://www.ncbi.nlm.nih.gov/pubmed/25636799

    [30] Lian Z P, Yan Q F, Lv Q et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal[J]. Scientific Reports, 5, 16563(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4643309/

    [31] Liu Y C, Yang Z, Cui D et al. Two-inch-sized perovskite CH3NH3PbX3(X = Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 27, 5176-5183(2015). http://www.ncbi.nlm.nih.gov/pubmed/26247401

    [32] Frost J M, Butler K T, Brivio F et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Letters, 14, 2584-2590(2014). http://pubs.acs.org/doi/abs/10.1021/nl500390f

    [33] Xiao R, Hou Y S, Fu Y P et al. Photocurrent mapping in single-crystal methylammonium lead iodide perovskite nanostructures[J]. Nano Letters, 16, 7710-7717(2016). http://europepmc.org/abstract/MED/27960528

    [34] Zhong M Z, Huang L, Deng H X et al. Flexible photodetectors based on phase dependent PbI2 single crystals[J]. Journal of Materials Chemistry C, 4, 6492-6499(2016). http://pubs.rsc.org/en/content/articlepdf/2016/tc/c6tc00918b

    [35] Veldhuis S A, Boix P P, Yantara N et al. Perovskite materials for light-emitting diodes and lasers[J]. Advanced Materials, 28, 6804-6834(2016). http://www.ncbi.nlm.nih.gov/pubmed/27214091

    [36] Qin X, Yao Y F, Dong H L et al. Perovskite photodetectors based on CH3NH3PbI3Single crystals[J]. Chemistry - An Asian Journal, 11, 2675-2679(2016).

    [37] Liu E K, Zhu B S, Luo J S[M]. Semiconductor physics, 288-292(2010).

    [38] Guo Y L, Liu C, Tanaka H et al. Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light[J]. The Journal of Physical Chemistry Letters, 6, 535-539(2015). http://pubs.acs.org/doi/pdf/10.1021/jz502717g

    [39] He M H, Chen Y N, Liu H et al. Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications[J]. Chemical Communications, 51, 9659-9661(2015).

    [40] Shewmon N T, Yu H, Constantinou I et al. Formation of perovskite heterostructures by ion exchange[J]. ACS Applied Materials & Interfaces, 8, 33273-33279(2016). http://www.ncbi.nlm.nih.gov/pubmed/27934163/

    [41] Hu X, Zhang X D, Liang L et al. High-performance flexible broadband photodetector based on organolead halide perovskite[J]. Advanced Functional Materials, 24, 7373-7380(2014). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201402020/pdf

    [42] Cao F R, Tian W, Gu B K et al. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures[J]. Nano Research, 10, 2244-2256(2017). http://www.cqvip.com/QK/71233X/201707/672737810.html

    [43] Tong X W, Kong W Y, Wang Y Y et al. High-performance red-light photodetector based on lead-free bismuth halide perovskite film[J]. ACS Applied Materials & Interfaces, 9, 18977-18985(2017). http://europepmc.org/abstract/MED/28508625

    [44] Lu J P, Carvalho A, Liu H W et al. Hybrid bilayer WSe 2-CH3NH3Pb I3 organolead halide perovskite as a high-performance photodetector [J]. Angewandte Chemie International Edition, 55, 11945-11949(2016).

    [45] Teng C J, Xie D, Sun M X et al. Organic dye-sensitized CH3NH3PbI3 hybrid flexible photodetector with bulk heterojunction architectures[J]. ACS Applied Materials & Interfaces, 8, 31289-31294(2016).

    [46] Xia H R, Li J, Sun W T et al. Organohalide lead perovskite based photodetectors with much enhanced performance[J]. Chemical Communications, 50, 13695-13697(2014). http://www.ncbi.nlm.nih.gov/pubmed/25247451

    [47] Saidaminov M I, Haque M A, Savoie M et al. Perovskite photodetectors operating in both narrowband and broadband regimes[J]. Advanced Materials, 28, 8144-8149(2016).

    [48] Wang Y, Xia Z G, Du S N et al. Solution-processed photodetectors based on organic-inorganic hybrid perovskite and nanocrystalline graphite[J]. Nanotechnology, 27, 175201(2016). http://www.ncbi.nlm.nih.gov/pubmed/26978061

    [49] Jeong B, Hwang I, Cho S H et al. Solvent-assisted gel printing for micropatterning thin organic-inorganic hybrid perovskite films[J]. ACS Nano, 10, 9026-9035(2016). http://www.ncbi.nlm.nih.gov/pubmed/27571339

    [50] Zhang Y, Du J, Wu X H et al. Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films[J]. ACS Applied Materials & Interfaces, 7, 21634-21638(2015).

    [51] Liu C, Wang K, Du P C et al. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3Pb I3 perovskite hybrids and PbS quantum dots as light harvesters [J]. Nanoscale, 7, 16460-16469(2015). http://www.ncbi.nlm.nih.gov/pubmed/26395642

    [52] Liu C, Wang K, Yi C et al. Ultrasensitive solution-processed perovskite hybrid photodetectors[J]. Journal of Materials Chemistry C, 3, 6600-6606(2015).

    [53] Zhao F Y, Xu K, Luo X et al. Ultrasensitivity broadband photodetectors based on perovskite: research on film crystallization and electrode optimization[J]. Organic Electronics, 46, 35-43(2017). http://www.sciencedirect.com/science/article/pii/S1566119917301337

    [54] Liu Y C, Sun J K, Yang Z et al. 20 mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 4, 1829-1837(2016). http://onlinelibrary.wiley.com/doi/10.1002/adom.201600327/pdf

    [55] Sun Z H, Zeb A, Liu S J et al. Exploring a lead-free semiconducting hybrid ferroelectric with a zero-dimensional perovskite-like structure[J]. Angewandte Chemie International Edition, 55, 11854-11858(2016). http://www.ncbi.nlm.nih.gov/pubmed/27538754

    [56] Lin Q Q, Armin A, Burn P L et al. Near infrared photodetectors based on sub-gap absorption in organohalide perovskite single crystals[J]. Laser & Photonics Reviews, 10, 1047-1053(2016). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201600215/pdf

    [57] Zhang Y X, Liu Y C, Li Y J et al. Perovskite CH3NH3Pb(BrxI1-x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications[J]. Journal of Materials Chemistry C, 4, 9172-9178(2016).

    [58] Fang H J, Li Q, Ding J et al. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator[J]. Journal of Materials Chemistry C, 4, 630-636(2016).

    [59] Ding J, Fang H J, Lian Z P et al. A self-powered photodetector based on a CH3NH3Pb I3 single crystal with asymmetric electrodes [J]. CrystEngComm, 18, 4405-4411(2016).

    [60] Han Q F, Bae S H, Sun P Y et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties[J]. Advanced Materials, 28, 2253-2258(2016). http://www.ncbi.nlm.nih.gov/pubmed/26790006

    [61] Liu Y C, Zhang Y X, Yang Z et al. Perovskite wafers: thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 28, 9203-9203(2016). http://onlinelibrary.wiley.com/doi/10.1002/adma.201670290/abstract

    [62] Wang L, Yuan G D, Duan R F et al. Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3-yXy) single crystals and photodetector applications[J]. AIP Advances, 6, 045115(2016). http://scitation.aip.org/content/aip/journal/adva/6/4/10.1063/1.4948312

    [63] Niu L, Zeng Q S, Shi J et al. Controlled growth and reliable thickness-dependent properties of organic-inorganic perovskite platelet crystal[J]. Advanced Functional Materials, 26, 5263-5270(2016). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201601392/pdf

    [64] Song J Z, Xu L M, Li J H et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices[J]. Advanced Materials, 28, 4861-4869(2016). http://onlinelibrary.wiley.com/doi/10.1002/adma.201600225/pdf

    [65] Deng W, Zhang X, Huang L M et al. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability[J]. Advanced Materials, 28, 2201-2208(2016). http://www.ncbi.nlm.nih.gov/pubmed/26780594

    [66] Zhu P C, Gu S, Shen X P et al. Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices[J]. Nano Letters, 16, 871-876(2016). http://www.cqvip.com/QK/86772X/201603/90747474504849544851485352.html

    [67] Deng H, Yang X K, Dong D D et al. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability[J]. Nano Letters, 15, 7963-7969(2015). http://www.ncbi.nlm.nih.gov/pubmed/26529584/

    [68] Hu Q, Wu H, Sun J et al. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading[J]. Nanoscale, 8, 5350-5357(2016). http://www.ncbi.nlm.nih.gov/pubmed/26883938

    [69] Horváth E, Spina M, Szekrényes Z et al. Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization[J]. Nano Letters, 14, 6761-6766(2014). http://pubs.acs.org/doi/abs/10.1021/nl5020684

    [70] Gao L, Zeng K, Guo J S et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity[J]. Nano Letters, 16, 7446-7454(2016). http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b03119

    [71] Deng H, Dong D D, Qiao K K et al. Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices[J]. Nanoscale, 7, 4163-4170(2015). http://d.g.wanfangdata.com.cn/Conference_8803612.aspx

    [72] Deng W, Huang L M, Xu X et al. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement[J]. Nano Letters, 17, 2482-2489(2017). http://www.ncbi.nlm.nih.gov/pubmed/28231011

    [73] Zhang Q, Ha S T, Liu X F et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J]. Nano Letters, 14, 5995-6001(2014). http://pubs.acs.org/doi/10.1021/nl503057g

    [74] Chen S, Shi G Q. Two-dimensional materials for halide perovskite-based optoelectronic devices[J]. Advanced Materials, 29, 1605448(2017). http://onlinelibrary.wiley.com/doi/10.1002/adma.201605448/full

    [75] Liu X H, Yu D J, Cao F et al. Low-voltage photodetectors with high responsivity based on solution-processed micrometer-scale all-inorganic perovskite nanoplatelets[J]. Small, 13, 1700364(2017). http://europepmc.org/abstract/MED/28508506

    [76] Tan Z J, Wu Y, Hong H et al. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector[J]. Journal of the American Chemical Society, 138, 16612-16615(2016). http://www.ncbi.nlm.nih.gov/pubmed/27966926

    [77] Liu J Y, Xue Y Z, Wang Z Y et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application[J]. ACS Nano, 10, 3536-3542(2016). http://europepmc.org/abstract/MED/26910395

    [78] Wang G, Li D, Cheng H C et al. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics[J]. Science Advances, 1, e1500613(2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646811/

    [79] Wei H M, Zhao X Y, Wei Y et al. Flash-evaporation printing methodology for perovskite thin films[J]. NPG Asia Materials, 9, e395(2017). http://www.nature.com/articles/am201791

    [80] Sutherland B R, Johnston A K, Ip A H et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering[J]. ACS Photonics, 2, 1117-1123(2015). http://www.researchgate.net/publication/281443580_Sensitive_Fast_and_Stable_Perovskite_Photodetectors_Exploiting_Interface_Engineering

    [81] Chen H W, Sakai N, Jena A K et al. A switchable high-sensitivity photodetecting and photovoltaic device with perovskite absorber[J]. The Journal of Physical Chemistry Letters, 6, 1773-1779(2015). http://www.ncbi.nlm.nih.gov/pubmed/26263348

    [82] Lin Q Q, Armin A, Burn P L et al. Filterless narrowband visible photodetectors[J]. Nature Photonics, 9, 687-694(2015). http://www.nature.com/abstractpagefinder/10.1038/nphoton.2015.175

    [83] Bao C X, Zhu W D, Yang J et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes[J]. ACS Applied Materials & Interfaces, 8, 23868-23875(2016). http://pubs.acs.org/doi/abs/10.1021/acsami.6b08318

    [84] Lin Q Q, Armin A, Lyons D M et al. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging[J]. Advanced Materials, 27, 2060-2064(2015). http://www.ncbi.nlm.nih.gov/pubmed/25677496

    [85] Shen L, Fang Y J, Wang D et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection[J]. Advanced Materials, 28, 10794-10800(2016). http://www.ncbi.nlm.nih.gov/pubmed/27783439

    [86] Dou L T, Yang Y, You J B et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 5, 5404(2014). http://www.nature.com/ncomms/2014/141120/ncomms6404/abs/ncomms6404.html

    [87] Zhu H L, Cheng J Q, Zhang D et al. Room-temperature solution-processed NiOx: PbI2 nanocomposite structures for realizing high-performance perovskite photodetectors[J]. ACS Nano, 10, 6808-6815(2016).

    [88] Wang W B, Zhao D W, Zhang F J et al. Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region[J]. Advanced Functional Materials, 27, 1703953(2017). http://www.onacademic.com/detail/journal_1000040068999810_5963.html

    [89] Bisi O, Campisano S U, Pavesi L[M]. Silicon-based microphotonics: from basics to applications(1999).

    [90] Pierre A, Deckman I, Lechêne P B et al. High detectivity all-printed organic photodiodes[J]. Advanced Materials, 27, 6411-6417(2015). http://onlinelibrary.wiley.com/doi/10.1002/adma.201502238/full

    [91] Fang Y J, Huang J S. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction[J]. Advanced Materials, 27, 2804-2810(2015). http://europepmc.org/abstract/med/25786908

    [92] Sun H X, Lei T, Tian W et al. Self-powered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth[J]. Small, 13, 1701042(2017). http://europepmc.org/abstract/MED/28558141

    [93] Li L L, Deng Y H, Bao C X et al. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response[J]. Advanced Optical Materials, 5, 1700672(2017). http://onlinelibrary.wiley.com/doi/10.1002/adom.201700672/pdf

    [94] Karak S, Nanjo C, Odaka M et al. A perovskite based plug and play AC photovoltaic device with ionic liquid induced transient opto-electronic conversion[J]. Journal of Materials Chemistry a, 4, 9019-9028(2016).

    [95] Bao C X, Chen Z L, Fang Y J et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 29, 1703209(2017). http://www.ncbi.nlm.nih.gov/pubmed/28846818

    [96] Wei H T, Fang Y J, Mulligan P et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 10, 333-339(2016). http://www.nature.com/abstractpagefinder/10.1038/nphoton.2016.41

    [97] Rao H S, Li W G, Chen B X et al. In situ growth of 120 cm 2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors [J]. Advanced Materials, 29, 1602639(2017). http://www.ncbi.nlm.nih.gov/pubmed/28220970

    [98] Gu L L, Tavakoli M M, Zhang D Q et al. 3D arrays of 1024 pixel image sensors based on lead halide perovskite nanowires[J]. Advanced Materials, 28, 9713-9721(2016).

    [99] Waleed A, Tavakoli M M, Gu L L et al. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates[J]. Nano Letters, 17, 523-530(2017). http://www.tandfonline.com/servlet/linkout?suffix=CIT0031&dbid=8&doi=10.1080%2F23080477.2017.1336153&key=28009510

    [100] Li F, Ma C, Wang H et al. Ambipolar solution-processed hybrid perovskite phototransistors[J]. Nature Communications, 6, 8238(2015).

    [101] He B, Li W L, Wang Q et al. Ultrasensitive all-solution-processed field-effect transistor based perovskite photodetectors with sol-gel SiO2 as the dielectric layer[J]. Journal of Alloys and Compounds, 717, 150-155(2017). http://www.sciencedirect.com/science/article/pii/S0925838817316687

    [102] Li D H, Wu H, Cheng H C et al. Electronic and ionic transport dynamics in organolead halide perovskites[J]. ACS Nano, 10, 6933-6941(2016). http://www.ncbi.nlm.nih.gov/pubmed/27315525

    [103] Kwon K C. Hong K, van Le Q, et al. Inhibition of ion migration for reliable operation of organolead halide perovskite-based metal/semiconductor/metal broadband photodetectors[J]. Advanced Functional Materials, 26, 4213-4222(2016).

    [104] Xu J X, Buin A, Ip A H et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nature Communications, 6, 7081(2015). http://europepmc.org/articles/pmc4432582

    [105] Domanski K, Tress W, Moehl T et al. Working principles of perovskite photodetectors: analyzing the interplay between photoconductivity and voltage-driven energy-level alignment[J]. Advanced Functional Materials, 25, 6936-6947(2015). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201503188/pdf

    [106] Kang D H, Pae S R, Shim J et al. an ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure[J]. Advanced Materials, 28, 7799-7806(2016). http://www.ncbi.nlm.nih.gov/pubmed/27352229

    [107] Sun Z H, Aigouy L, Chen Z Y. Plasmonic-enhanced perovskite-graphene hybrid photodetectors[J]. Nanoscale, 8, 7377-7383(2016). http://www.ncbi.nlm.nih.gov/pubmed/26882839

    [108] Wang Y S, Zhang Y P, Lu Y et al. Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain[J]. Advanced Optical Materials, 3, 1389-1396(2015). http://onlinelibrary.wiley.com/doi/10.1002/adom.201500150/full

    [109] Lee Y, Kwon J, Hwang E et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 27, 41-46(2015).

    [110] Dang V Q, Han G S, Trung T Q et al. Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors[J]. Carbon, 105, 353-361(2016). http://www.sciencedirect.com/science/article/pii/S0008622316303311

    [111] Chen C, Zhang X Q, Wu G et al. Visible-light ultrasensitive solution-prepared layered organic-inorganic hybrid perovskite field-effect transistor[J]. Advanced Optical Materials, 5, 1600539(2017). http://onlinelibrary.wiley.com/doi/10.1002/adom.201600539/pdf

    [112] Lu Q R, Li J, Lian Z P et al. CH3NH3PbI3 single crystal-based ambipolar field-effect transistor with ta2o5 as the top gate dielectric[J]. Acta Physico-Chimica Sinica, 33, 249-254(2017). http://www.whxb.pku.edu.cn/EN/10.3866/PKU.WHXB201610142

    [113] Spina M, Náfrádi B, Tóháti H M et al. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes[J]. Nanoscale, 8, 4888-4893(2016).

    [114] Spina M, Bonvin E, Sienkiewicz A et al. Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels[J]. Scientific Reports, 6, 19834(2016).

    [115] Yan Y, Luo S. Photomultiplier tubes guide weak light detection[J]. Laser & Optoelectronics Progress, 37, 38-40, 12(2000).

    [116] Huo L Z, Tan H S, He R et al. Research of blue-violet enhanced silicon photomultiplier[J]. Laser & Optoelectronics Progress, 52, 110401(2015).

    [117] Gao X Y, Zhang Y, Cui Y X et al. Research progress in organic photomultiplication photodetector[J]. Laser & Optoelectronics Progress, 55, 070001(2018).

    [118] Dong R, Fang Y J, Chae J et al. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites[J]. Advanced Materials, 27, 1912-1918(2015). http://onlinelibrary.wiley.com/doi/10.1002/adma.201405116/pdf

    [119] Liu C, Peng H, Wang K et al. PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors[J]. Nano Energy, 30, 27-35(2016). http://www.sciencedirect.com/science/article/pii/S2211285516304062

    [120] Chen S, Teng C J, Zhang M et al. A flexible UV-vis-NIR photodetector based on a perovskite/conjugated-polymer composite[J]. Advanced Materials, 28, 5969-5974(2016). http://www.ncbi.nlm.nih.gov/pubmed/27174465

    [121] Gao T, Zhang Q, Chen J N et al. Performance-enhancing broadband and flexible photodetectors based on perovskite/ZnO-nanowire hybrid structures[J]. Advanced Optical Materials, 5, 1700206(2017). http://onlinelibrary.wiley.com/doi/10.1002/adom.201700206/full

    [122] Higashi Y, Kim K S, Jeon H G et al. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system[J]. Journal of Applied Physics, 108, 034502(2010). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5574720

    [123] Dandin M, Abshire P, Smela E. Optical filtering technologies for integrated fluorescence sensors[J]. Lab on a Chip, 7, 955-977(2007). http://europepmc.org/abstract/MED/17653336

    [124] Fu X, Guo K, Xiong S F et al. Development of wide-band low-noise filter for solar blind detection system[J]. Chinese Journal of Lasers, 44, 0603002(2017).

    [125] Yu J C, Chen X, Wang Y et al. A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure[J]. Journal of Materials Chemistry C, 4, 7302-7308(2016). http://doi.org/10.1039/c6tc02097f

    [126] Cao M, Tian J Y, Cai Z et al. Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high-sensitive self-powered photodetector[J]. Applied Physics Letters, 109, 233303(2016). http://scitation.aip.org/content/aip/journal/apl/109/23/10.1063/1.4971772

    [127] Su L, Zhao Z X, Li H Y et al. High-performance organolead halide perovskite-based self-powered triboelectric photodetector[J]. ACS Nano, 9, 11310-11316(2015). http://www.ncbi.nlm.nih.gov/pubmed/26469207

    [128] Lu H, Tian W, Cao F R et al. A self-powered and stable all-perovskite photodetector-solar cell nanosystem[J]. Advanced Functional Materials, 26, 1296-1302(2016). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201504477/pdf

    [129] Liu P, He X X, Ren J H et al. organic-inorganic hybrid perovskite nanowire laser arrays[J]. ACS Nano, 11, 5766-5773(2017). http://europepmc.org/abstract/MED/28521103

    [130] Cheng Z Y, Wang Z, Xing R B et al. Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography[J]. Chemical Physics Letters, 376, 481-486(2003). http://www.sciencedirect.com/science/article/pii/S0009261403010170

    [131] Luan S F, Cheng Z Y, Xing R B et al. Patterning organic luminescent materials by solvent-assisted dewetting and polymer-bonding lithography[J]. Journal of Applied Physics, 97, 086102(2005). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5043800

    Yanzhen Liu, Guohui Li, Yanxia Cui, Ting Ji, Yuying Hao. Research Progress in Perovskite Photodetectors[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010001
    Download Citation