• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11410 (2018)
Liu Monan1, Li Mutian2, and Sun Hongbo2、*
Author Affiliations
  • 1College of Physics, Jilin University, Changchun, Jilin 130012, China
  • 2State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
  • show less
    DOI: 10.3788/LOP55.011410 Cite this Article Set citation alerts
    Liu Monan, Li Mutian, Sun Hongbo. 3D Femtosecond Laser Nanoprinting[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11410 Copy Citation Text show less
    References

    [1] Gratton S E A, Williams S S, Napier M E et al. . The pursuit of a scalable nanofabrication platform for use in material and life science applications[J]. Accounts of Chemical Research, 41, 1685-1695(2008). http://www.ncbi.nlm.nih.gov/pubmed/18720952

    [2] Gates B D, Xu Q B, Stewart M et al. New approaches to nanofabrication: Molding, printing, and other techniques[J]. Chemical Reviews, 105, 1171-1196(2005). http://pubs.acs.org/doi/pdf/10.1021/cr030076o

    [3] Ariga K, Hill J P, Ji Q M. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application[J]. Physical Chemistry Chemical Physics, 9, 2319-2340(2007). http://pubs.acs.org/servlet/linkout?suffix=ref10/cit10&dbid=8&doi=10.1021%2Facs.nanolett.5b01424&key=17492095

    [4] Shimizu T. Bottom-up synthesis and morphological control of high-axial-ratio nanostructures through molecular self-assembly[J]. Polymer Journal, 34, 1-22(2003). http://onlinelibrary.wiley.com/doi/10.1002/chin.200332260/references

    [5] Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication:A new trend in nanotechnology of soft materials[J]. Current Opinion in Colloid & Interface Science, 6, 11-16(2001). http://www.sciencedirect.com/science/article/pii/S1359029400000819

    [6] Wu N, Russel W B. Micro- and nano-patterns created via electrohydrodynamic instabilities[J]. Nano Today, 4, 180-192(2009). http://www.sciencedirect.com/science/article/pii/S1748013209000048

    [7] Hayden O, Agarwal R, Lu W. Semiconductor nanowire devices[J]. Nano Today, 3, 12-22(2008).

    [8] Li Y F, Zhang J H, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays[J]. Nano Today, 5, 117-127(2010). http://www.sciencedirect.com/science/article/pii/S1748013210000307

    [9] Kitayaporn S, Hoo J H, Boehringer K F et al. Orchestrated structure evolution: Accelerating direct-write nanomanufacturing by combining top-down patterning with bottom-up growth[J]. Nanotechnology, 21, 195306(2010). http://europepmc.org/abstract/MED/20400815

    [10] Yan Y D, Hu Z J, Zhao X S et al. Top-down nanomechanical machining of three-dimensional nanostructures by atomic force microscopy[J]. Small, 6, 724-728(2010). http://works.bepress.com/xiaodong_li/126

    [11] Chen S Y. Bomer J G, van der Wiel W G, et al. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication[J]. ACS Nano, 3, 3485-3492(2009).

    [12] Cheng J Y, Ross C A, Smith H I et al. Templated self-assembly of block copolymers: Top-down helps bottom-up[J]. Advanced Materials, 18, 2505-2521(2006). http://onlinelibrary.wiley.com/doi/10.1002/adma.200502651/full

    [13] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010). http://www.sciencedirect.com/science/article/pii/S1748013210001131

    [14] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008). http://www.nature.com/nphoton/journal/v2/n4/abs/nphoton.2008.47.html

    [15] Li L J, Fourkas J T. Multiphoton polymerization[J]. Materials Today, 10, 30-37(2007).

    [16] Cumpston B H, Ananthavel S P, Barlow S et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 398, 51-54(1999).

    [17] Li L J, Gattass R R, Gershgoren E et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 324, 910-913(2009). http://www.jstor.org/stable/20493942

    [18] Malinauskas M, Zukauskas A, Bickauskaite G et al. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses[J]. Optics Express, 18, 10209-10221(2010). http://europepmc.org/abstract/med/20588875

    [19] Park S H, Yang D Y, Lee K S. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices[J]. Laser & Photonics Reviews, 3, 1-11(2009). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200810027/full

    [20] Lee K S, Yang D Y, Park S H et al. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications[J]. Polymers for Advanced Technologies, 17, 72-82(2006). http://onlinelibrary.wiley.com/doi/10.1002/pat.664/full

    [21] Lee K S, Kim R H, Yang D Y et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization[J]. Progress in Polymer Science, 33, 631-681(2008). http://www.sciencedirect.com/science/article/pii/S0079670008000130

    [22] Chong T C, Hong M H, Shi L P. Laser precision engineering: From microfabrication to nanoprocessing[J]. Laser & Photonics Reviews, 4, 123-143(2010). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200810057/full

    [23] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices: micromachines can be created with higher resolution using two-photon absorption[J]. Nature, 412, 697-698(2001). http://xueshurefer.baidu.com/nopagerefer?id=f59ff84d439cb74c49e875c3d302aeaf

    [24] Sun H B, Kawata S. Two-photon photopolymerization and 3D lithographic microfabrication[J]. Cheminform, 36, 169-273(2005). http://www.springerlink.com/content/c1vdq7qfy8daybrb/?p=5a5e8ee3f6a040839411b05372ba2040&pi=2

    [25] Xu B B, Zhang Y L, Xia H et al. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing[J]. Lab on a Chip, 13, 1677-1690(2013). http://labs.europepmc.org/abstract/MED/23493958

    [26] Wei D, Chen P, Chen X D et al. Study on femtosecond laser processing of nonmetal vascular stent[J]. Laser & Optoelectronics Progress, 50, 091403(2013).

    [27] Jia Y C, Chen F. Advances in dielectric crystal waveguides produced by direct femtosecond laser writing[J]. Laser & Optoelectronics Progress, 53, 010001(2015).

    [28] Chen A M, He X M, Fei D H et al. Theoretical study on femtosecond laser heating of two-layer metal Films[J]. Laser & Optoelectronics Progress, 54, 051402(2017).

    [29] Meng A H, Cui D Y, Zhang X Y et al. Femtosecond laser fabrication and sensing performance of birefringence fiber Bragg gratings[J]. Laser & Optoelectronics Progress, 54, 061406(2017).

    [30] Jing C R, Wang Z H, Cheng Y. Three-dimensional micro-and nano-machining based on spatiotemporal focusing technique of femtosecond laser[J]. Laser & Optoelectronics Progress, 54, 040005(2017).

    [31] Pang B, Scully P, Taranu A et al. Effect of annealing on optical structures fabricated by femtosecond laser irradiation inside polyme polymethyl methacrylate[J]. Laser & Optoelectronics Progress, 54, 051403(2017).

    [32] Dewhurst R J. Measurement science and technology: A historical perspective[J]. Measurement Science & Technology, 24, 012006(2013). http://www.ingentaconnect.com/content/iop/mst/2013/00000024/00000001/art012006

    [33] Lim T W, Son Y, Jeong Y J et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length[J]. Lab on a Chip, 11, 100-103(2011). http://europepmc.org/abstract/MED/20938497

    [34] Deepak K L N, Rao S V, Rao D N. Femtosecond laser-fabricated microstructures in bulk poly (methylmethacrylate) and poly (dimethylsiloxane) at 800 nm towards lab-on-a-chip applications[J]. Pramana, 75, 1221-1232(2010). http://link.springer.com/article/10.1007/s12043-010-0210-9

    [35] Farson D F, Choi H W, Lu C M et al. Femtosecond laser bulk micromachining of microfluid channels in poly (methylmethacrylate)[J]. Journal of Laser Applications, 18, 210-215(2006). http://scitation.aip.org/content/lia/journal/jla/18/3/10.2351/1.2227015

    [36] Wochnowski C, Cheng Y, Hanada Y et al. Fs-laser-induced fabrication of polymeric optical and fluidic microstructures[J]. Journal of Laser Micro Nanoengineering, 1, 195-200(2006). http://www.researchgate.net/publication/228481938_Fs-laser-induced_Fabrication_of_Polymeric_Optical_and_Fluidic_Microstruc-tures

    [37] Pfleging W, Adamietz R, Brueckner H J et al. Laser-assisted modification of polymers for microfluidic, micro-optics and cell culture applications[C]. SPIE, 6459, 645907(2007).

    [38] Kumi G, Yanez C O, Belfield K D et al. High-speed multiphoton absorption polymerization: Fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios[J]. Lab on a Chip, 10, 1057-1060(2010). http://www.ncbi.nlm.nih.gov/pubmed/20358114

    [39] Zhu X, Naumov A Y, Villeneuve D M et al. Influence of laser parameters and material properties on micro drilling with femtosecond laser pulses[J]. Applied Physics A-Materials Science and Processing, 69, S367-S371(1999). http://link.springer.com/article/10.1007/s003390051418

    [40] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004). http://link.springer.com/article/10.1007/s00339-004-2547-8

    [41] Shah L, Tawney J, Richardson M et al. Femtosecond laser deep hole drilling of silicate glasses in air[J]. Applied Surface Science, 183, 151-164(2001). http://www.sciencedirect.com/science/article/pii/S0169433201004688

    [42] Lee J T, George M C, Moore J S et al. Multiphoton writing of three-Dimensional fluidic channels within a porous matrix[J]. Journal of the American Chemical Society, 131, 11294-11295(2009). http://www.ncbi.nlm.nih.gov/pubmed/19637870

    [43] Sugioka K, Cheng Y, Midorikawa K. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture[J]. Applied Physics A, 81, 1-10(2005). http://link.springer.com/article/10.1007/s00339-005-3225-1

    [44] Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication[J]. Laser & Photonics Reviews, 2, 100-111(2008). http://onlinelibrary.wiley.com/doi/10.1002/lpor.200710039/pdf

    [45] Zhang Y L, Guo L, Wei S et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 5, 15-20(2010). http://www.sciencedirect.com/science/article/pii/S1748013210000046

    [46] Cerrina F. X-ray imaging: Applications to patterning and lithography[J]. Journal of Physics D: Applied Physics, 33, R103-R116(2000). http://www.ingentaconnect.com/content/iop/jphysd/2000/00000033/00000012/art00201

    [47] Grigorescu A E, Hagen C W. Resists for sub-20-nm electron beam lithography with a focus on HSQ:State of the art[J]. Nanotechnology, 20, 292001(2009). http://europepmc.org/abstract/MED/19567961

    [48] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Applied Physics Letters, 80, 312-314(2002). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4865850

    [49] Sun Y L, Li Q, Sun S M et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists[J]. Nature Communications, 6, 8612(2015). http://europepmc.org/abstract/MED/26472600

    [50] Sun H B, Tanaka T, Kawata S. Three-dimensional focal spots related to two-photon excitation[J]. Applied Physics Letters, 80, 3673-3675(2002). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4865867

    [51] Chua C K, Leong K F, Sudarmadji N et al. Selective laser sintering of functionally graded tissue scaffolds[J]. MRS Bulletin, 36, 1006-1014(2011). http://www.researchgate.net/publication/259417591_Selective_laser_sintering_of_functionally_graded_tissue_scaffolds

    [52] Liu Z H, Zhang D Q, Sing S L et al. Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy[J]. Materials Characterization, 94, 116-125(2014). http://www.sciencedirect.com/science/article/pii/S1044580314001351

    [53] Yeong W Y, Sudarmadji N, Yu H Y et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering[J]. Acta Biomaterialia, 6, 2028-2034(2010). http://europepmc.org/abstract/med/20026436

    [54] Durejko T, Zietala M, Polkowski W et al. Thin wall tubes with Fe3Al/SS316L graded structure obtained by using laser engineered net shaping technology[J]. Materials & Design, 63, 766-774(2014). http://www.sciencedirect.com/science/article/pii/S0261306914005391

    [55] Jia A. Teoh J E M, Suntornnond R,et al. Design and 3D printing of scaffolds and tissues[J]. Engineering, 1, 261-268(2015).

    [56] Liu D X, Sun Y L, Dong W F et al. Dynamic laser prototyping for biomimetic nanofabrication[J]. Laser & Photonics Reviews, 8, 882-888(2014). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201400043/pdf

    [57] Xu B B, Zhang Y L, Zhang R et al. Programmable assembly of CdTe quantum dots into microstructures by femtosecond laser direct writing[J]. Journal of Materials Chemistry C, 1, 4699-4704(2013). http://pubs.rsc.org/en/Content/ArticleLanding/TC/2013/C3TC30666F

    [58] Deng Z F, Yang Q, Chen F et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 40, 1928-1931(2015). http://www.ncbi.nlm.nih.gov/pubmed/25927750

    [59] Lee K, Wagermaier W, Masic A et al. Self-assembly of amorphous calcium carbonate microlens arrays[J]. Nature Communications, 3, 725(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3316890/

    [60] Akatay A, Ataman C, Urey H. High-resolution beam steering using microlens arrays[J]. Optics Letters, 31, 2861-2863(2006). http://europepmc.org/abstract/MED/16969403

    [61] Lin C P, Yang H S, Chao C K. Hexagonal microlens array modeling and fabrication using a thermal reflow process[J]. Journal of Micromechanics & Microengineering, 13, 775-781(2003). http://www.ingentaconnect.com/content/iop/jmm/2003/00000013/00000005/art00333

    [62] Wu M H, Park C, Whitesides G M. Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography[J]. Langmuir, 18, 9312-9318(2002). http://pubs.acs.org/doi/abs/10.1021/la015735b

    [63] Lee B K, Kim D S, Kwon T H. Replication of microlens arrays by injection molding[J]. Microsystem Technologies, 10, 531-535(2004). http://link.springer.com/article/10.1007/s00542-004-0387-2

    [64] Zhuang Z F, Chen Y T, Yu F H et al. Field curvature correction method for ultrashort throw ratio projection optics design using an odd polynomial mirror surface[J]. Applied Optics, 53, E69-E76(2014). http://www.opticsinfobase.org/abstract.cfm?URI=ao-53-22-E69

    [65] Dumas D, Fendler M, Berger F et al. Infrared camera based on a curved retina[J]. Optics Letters, 37, 653-655(2012). http://www.ncbi.nlm.nih.gov/pubmed/22344137

    [66] Wang J, Guo B H, Sun Q et al. Third-order aberration fields of pupil decentered optical systems[J]. Optics Express, 20, 11652-11658(2012). http://www.ncbi.nlm.nih.gov/pubmed/22714151

    [67] Tian Z N, Yao W G, Xu J J et al. Focal varying microlens array[J]. Optics Letters, 40, 4222-4225(2015).

    [68] Zhan X P, Xu Y X, Xu H L et al. Toward on-chip unidirectional and single-mode polymer microlaser[J]. Journal of Lightwave Technology, 35, 2331-2336(2017). http://ieeexplore.ieee.org/document/7858709/

    [69] Hwang S W, Tao H, Kim D H et al. A physically transient form of silicon electronics[J]. Science, 337, 1640-1644(2012). http://www.jstor.org/stable/41703610

    [70] Kim D H, Viventi J, Amsden J J et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nature Materials, 9, 511-517(2010). http://dev.europepmc.org/abstract/MED/20400953/reload=2;jsessionid=VfEawMSlhmkbRqkWh6Pj.0

    [71] Tsioris K, Tilburey G E, Murphy A R et al. Functionalized-silk-based active optofluidic devices[J]. Advanced Functional Materials, 20, 1083-1089(2010). http://onlinelibrary.wiley.com/doi/10.1002/adfm.200902050/full

    [72] Capelli R, Amsden J J, Generali G et al. Integration of silk protein in organic and light-emitting transistors[J]. Organic Electronics, 12, 1146-1151(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3418596/

    [73] Omenetto F G, Kaplan D L. New opportunities for an ancient material[J]. Science, 329, 528-531(2010). http://europepmc.org/articles/PMC3136811/

    [74] Kim S, Marelli B, Brenckle M A et al. All-water-based electron-beam lithography using silk as a resist[J]. Nature Nanotechnology, 9, 306-310(2014). http://europepmc.org/abstract/med/24658173

    [75] Mondia J P, Amsden J J, Lin D M et al. Rapid nanoimprinting of doped silk films for enhanced fluorescent emission[J]. Advanced Materials, 22, 4596-4599(2010). http://europepmc.org/abstract/med/20859936

    [76] Kurland N E, Dey T, Kundu S C et al. Precise patterning of silk microstructures using photolithography[J]. Advanced Materials, 25, 6207-6212(2013). http://europepmc.org/abstract/med/24038619

    [77] Tsioris K, Tao H, Liu M K et al. Rapid transfer-based micropatterning and dry etching of silk microstructures[J]. Advanced Materials, 23, 2015-2019(2011). http://onlinelibrary.wiley.com/doi/10.1002/adma.201004771/full

    [78] Engelhardt S, Hoch E, Borchers K et al. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization[J]. Biofabrication, 3, 025003(2011). http://www.europepmc.org/abstract/MED/21562366

    [79] Qin X H, Gruber P, Markovic M et al. Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs[J]. Polymer Chemistry, 5, 6523-6533(2014). http://www.researchgate.net/publication/264555678_Enzymatic_Synthesis_of_Hyaluronic_Acid_Vinyl_Esters_for_Two-photon_Microfabrication_of_Biocompatible_and_Biodegradable_Hydrogel_Constructs

    [80] Sun Y L, Dong W F, Niu L G et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing[J]. Light: Science & Applications, 3, e129(2014). http://www.nature.com/lsa/journal/v3/n1/abs/lsa201410a.html

    [81] Khripin C Y, Brinker C J, Kaehr B. Mechanically tunable multiphoton fabricated protein hydrogels investigated using atomic force microscopy[J]. Soft Matter, 6, 2842-2848(2010). http://pubs.rsc.org/en/content/articlehtml/2010/sm/c001193b

    [82] Sun Y L, Liu D X, Dong W F et al. Tunable protein harmonic diffractive micro-optical elements[J]. Optics Letters, 37, 2973-2975(2012). http://www.ncbi.nlm.nih.gov/pubmed/22825196

    [83] Sun Y L, Sun S M, Wang P et al. Customization of protein single nanowires for optical biosensing[J]. Small, 11, 2869-2876(2015).

    [84] Sun Y L, Hou Z S, Sun S M et al. Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness[J]. Scientific Reports, 5, 12852(2015). http://www.nature.com/articles/srep12852

    [85] Manocchi A K, Domachuk P, Omenetto F G et al. Facile fabrication of gelatin-based biopolymeric optical waveguides[J]. Biotechnology and Bioengineering, 103, 725-732(2009). http://www.ncbi.nlm.nih.gov/pubmed/19360894

    [86] Wang P. WangY P, Tong L M. Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale[J]. Light: Science and Applications, 2, e102(2013). http://www.nature.com/lsa/journal/v2/n10/abs/lsa201358a.html

    [87] Choi H W, Bong S, Farson D F et al. Femtosecond laser micromachining and application of hot embossing molds for microfluid device fabrication[J]. Journal of Laser Applications, 21, 196-204(2009). http://scitation.aip.org/content/lia/journal/jla/21/4/10.2351/1.3263118

    [88] Sun Y L, Sun S M, Zheng B Y et al. Protein-based multi-mode interference optical micro-splitters[J]. IEEE Photonics Technology Letters, 28, 629-632(2016). http://ieeexplore.ieee.org/document/7336503/

    [89] Wu D, Wang J N, Niu L G et al. Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging[J]. Advanced Optical Materials, 2, 751-758(2014).

    [90] Jeong K H, Kim J, Lee L P. Biologically inspired artificial compound eyes[J]. Science, 312, 557-561(2006). http://europepmc.org/abstract/MED/16645090

    [91] Song Y M, Xie Y Z, Malyarchuk V et al. Digital cameras with designs inspired by the arthropod eye[J]. Nature, 497, 95-99(2013). http://europepmc.org/abstract/MED/23636401

    [92] Floreano D, Pericet C R, Viollet S et al. Miniature curved artificial compound eyes[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 9267-9272(2013). http://www.ncbi.nlm.nih.gov/pubmed/23690574

    CLP Journals

    [1] Zhou Fengquan, Yuan Shuai, Guo Zhengru, Hao Qiang, Xu Hui, Zeng Heping. High Power Compact Fiber Femtosecond Laser Amplification System[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103201

    Liu Monan, Li Mutian, Sun Hongbo. 3D Femtosecond Laser Nanoprinting[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11410
    Download Citation