• High Power Laser Science and Engineering
  • Vol. 7, Issue 3, 03000e46 (2019)
Xumin Cai1、2, Xiuqing Lin1, Guohui Li1, Junye Lu1, Ziyu Hu1、3, and Guozong Zheng1、†
Author Affiliations
  • 1Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3College of Chemistry, Fuzhou University, Fuzhou 350116, China
  • show less
    DOI: 10.1017/hpl.2019.24 Cite this Article Set citation alerts
    Xumin Cai, Xiuqing Lin, Guohui Li, Junye Lu, Ziyu Hu, Guozong Zheng. Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e46 Copy Citation Text show less

    Abstract

    In this paper, a highly deuterated potassium dihydrogen phosphate (DKDP) crystal with sizes up to $318~\text{mm}\times 312~\text{mm}\times 265~\text{mm}$ was grown by the rapid-growth method. The synthesis tank device was specially designed to synthesize a higher deuterium concentration and high-purity DKDP solution. The deuterium content of the as-grown crystal, which was 97.9%, was determined by two methods, including infrared (IR) spectroscopy and thermo-gravimetric analysis (TGA) measurements. The performances of the 97.9% DKDP crystal, including transmission, absorption coefficient, and laser-induced damage threshold (LIDT) were measured. The results indicate that, in the near-infrared band, the transmission of the 97.9% DKDP crystal is higher than that of KDP and 70% DKDP crystals, and the absorption coefficient is lower. The LIDT of the crystal reached $23.2~\text{J}\cdot \text{cm}^{-2}$ (R-on-1, 1064 nm, 3 ns), which meets the engineering requirements for use in optical applications.
    $$\begin{eqnarray}\displaystyle & \displaystyle \text{P}_{2}\text{O}_{5}+3\text{D}_{2}\text{O}\rightarrow 2\text{D}_{3}\text{PO}_{4},\qquad \qquad & \displaystyle\end{eqnarray}$$(1)

    View in Article

    $$\begin{eqnarray}\displaystyle & \displaystyle 2\text{D}_{3}\text{PO}_{4}+\text{K}_{2}\text{CO}_{3}+\text{D}_{2}\text{O}\qquad \qquad & \displaystyle \nonumber\\ \displaystyle & \displaystyle \rightarrow 2\text{KD}_{2}\text{PO}_{4}+2\text{D}_{2}\text{O}+\text{CO}_{2}\uparrow . & \displaystyle\end{eqnarray}$$(2)

    View in Article

    $$\begin{eqnarray}D=\left(\frac{58.699}{\unicode[STIX]{x1D6FC}}-67.62\right)\times 100\%,\end{eqnarray}$$(3)

    View in Article

    $$\begin{eqnarray}k_{\text{eff}}=0.68\exp (0.00382M),\end{eqnarray}$$(4)

    View in Article

    $$\begin{eqnarray}T_{\text{meas}}=T_{\text{Fresnel}}+T_{\text{bulk}}+T_{\text{Fresnel}},\end{eqnarray}$$(5)

    View in Article

    $$\begin{eqnarray}T_{\text{Fresnel}}=1-R_{i}.\end{eqnarray}$$(6)

    View in Article

    $$\begin{eqnarray}R_{i}=\left(\frac{1-n}{1+n}\right)^{2}.\end{eqnarray}$$(7)

    View in Article

    $$\begin{eqnarray}\displaystyle I_{o} & = & \displaystyle I_{i}\text{e}^{-\unicode[STIX]{x1D6FC}_{\text{ac}}L},\end{eqnarray}$$(8)

    View in Article

    $$\begin{eqnarray}\displaystyle T_{\text{bulk}} & = & \displaystyle \frac{I_{o}}{I_{i}}.\end{eqnarray}$$(9)

    View in Article

    $$\begin{eqnarray}T_{\text{bulk}}=I_{i}\text{e}^{-\unicode[STIX]{x1D6FC}_{\text{ac}}L}.\end{eqnarray}$$(10)

    View in Article

    $$\begin{eqnarray}T_{\text{bulk}}=\frac{T_{\text{meas}}}{(T_{\text{Fresnel}})^{2}}=\frac{T_{\text{meas}}}{(1-R_{i})^{2}}.\end{eqnarray}$$(11)

    View in Article

    $$\begin{eqnarray}\frac{T_{\text{meas}}}{(1-R_{i})^{2}}=I_{i}\text{e}^{-\unicode[STIX]{x1D6FC}_{\text{ac}}L}.\end{eqnarray}$$(12)

    View in Article

    $$\begin{eqnarray}\unicode[STIX]{x1D6FC}_{\text{ac}}=\frac{-\ln [T_{\text{meas}}/(1-R_{i})^{2}]}{L},\end{eqnarray}$$(13)

    View in Article

    Xumin Cai, Xiuqing Lin, Guohui Li, Junye Lu, Ziyu Hu, Guozong Zheng. Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals[J]. High Power Laser Science and Engineering, 2019, 7(3): 03000e46
    Download Citation