• Acta Optica Sinica
  • Vol. 41, Issue 9, 0901001 (2021)
Xiaoye Wang1, Songhua Wu1、2、3、*, Xiaoying Liu1, Jiaping Yin4, Weijun Pan5, and Xuan Wang5
Author Affiliations
  • 1Department of Marine Technology, College of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
  • 2Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
  • 3Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong 266100, China
  • 4Qingdao Leice Transient Technology Co., Ltd., Qingdao, Shandong 266100, China
  • 5Air Traffic Management Institute, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, China
  • show less
    DOI: 10.3788/AOS202141.0901001 Cite this Article Set citation alerts
    Xiaoye Wang, Songhua Wu, Xiaoying Liu, Jiaping Yin, Weijun Pan, Xuan Wang. Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar[J]. Acta Optica Sinica, 2021, 41(9): 0901001 Copy Citation Text show less
    References

    [1] Gerz T, Holzäpfel F, Darracq D et al. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 38, 181-208(2002).

    [2] Veillette P R. Data show that US wake-turbulence accidents are most frequent at low altitude and during approach and landing[J]. Flight Safety Digest, 21, 1-47(2002). http://www.researchgate.net/publication/303130006_Data_show_that_US_wake-turbulence_accidents_are_most_frequent_at_low_altitude_and_during_approach_and_landing

    [3] Hallock J N, Greene G C, Tittsworth J et al. Use of simple models to determine wake vortex categories for new aircraft (invited). [C]∥7th AIAA Atmospheric and Space Environments Conference, June 22-26, 2015, Dallas, TX. Reston, Virginia: AIAA, 3172(2015).

    [4] Holzäpfel F, Schwarz C, Dengler K et al. Prediction of dynamic pairwise wake vortex separations for approach and landing. [C]∥3rd AIAA Atmospheric Space Environments Conference, June 27-30, 2011, Honolulu, Hawaii, USA. Reston, Virginia: AIAA, 3037(2011).

    [5] Treve V, Rooseleer F. RECAT-EU proposal, validation and consultation[R]. Brétigny: Eurocontrol Experimental Centre(2014).

    [6] Hallock J N, Holzäpfel F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 98, 27-36(2018). http://www.sciencedirect.com/science/article/pii/S037604211730218X

    [7] Cheng J L, Hoff A, Tittsworth J et al. The development of wake turbulence re-categorization in the United States. [C]∥8th AIAA Atmospheric and Space Environments Conference, June 13-17, 2016, Washington, D. C. Reston, Virginia: AIAA, 3434(2016).

    [8] Wu S H, Zhai X C, Liu B Y et al. Aircraft wake vortex and turbulence measurement under near-ground effect using coherent Doppler lidar[J]. Optics Express, 27, 1142-1163(2019). http://www.researchgate.net/publication/330373341_Aircraft_wake_vortex_and_turbulence_measurement_under_near-ground_effect_using_coherent_Doppler_lidar

    [9] Zhou Y Z, Wang C, Liu Y P et al. Research progress and application of coherent wind lidar[J]. Laser & Optoelectronics Progress, 56, 020001(2019).

    [10] Akbulut M, Hwang J, Kimpel F et al. Pulsed coherent fiber lidar transceiver for aircraft in-flight turbulence and wake-vortex hazard detection[J]. Proceedings of SPIE, 8037, 80370R(2011). http://spie.org/x648.xml?product_id=883990

    [11] Köpp F. Doppler lidar investigation of wake vortex transport between closely spaced parallel runways[J]. AIAA Journal, 32, 805-810(1994). http://arc.aiaa.org/doi/abs/10.2514/3.12057

    [12] Köpp F, Rahm S, Smalikho I et al. Characterization of aircraft wake vortices by 2-μm pulsed Doppler lidar[J]. Journal of Atmospheric and Oceanic Technology, 21, 194-206(2004). http://adsabs.harvard.edu/abs/2004JAtOT..21..194K

    [13] Köpp F, Smalikho I, Rahm S et al. Characterization of aircraft wake vortices by multiple-lidar triangulation[J]. AIAA Journal, 41, 1081-1088(2003).

    [14] Köpp F, Rahm S, Smalikho I et al. Comparison of wake-vortex parameters measured by pulsed and continuous-wave lidars[J]. Journal of Aircraft, 42, 916-923(2005). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110993515.html

    [15] Rahm S, Smalikho I, Köpp F et al. Characterization of aircraft wake vortices by airborne coherent Doppler lidar[J]. Journal of Aircraft, 44, 799-805(2007).

    [16] Rahm S, Smalikho I. Aircraft wake vortex measurement with airborne coherent Doppler lidar[J]. Journal of Aircraft, 45, 1148-1155(2008). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110947950.html

    [17] Bouteyre A D, Canat G, Valla M et al. Pulsed 1.5-μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 441-450(2009). http://ieeexplore.ieee.org/document/4770209/citations

    [18] Bouteyre A D, Augere B, Valla M et al. Aircraft wake vortex study and characterization with 1.5 μm fiber Doppler lidar[J]. Aerospace Lab, 1-13(2009). http://www.researchgate.net/publication/280095938_Aircraft_Wake_Vortex_Study_and_Characterization_with_15_m_Fiber_Doppler_Lidar

    [19] Jacob D, Lai D Y, Pruis M J et al. Assessment of WakeMod 4: a new standalone wake vortex algorithm for estimating circulation strength and position. [C]∥7th AIAA Atmospheric and Space Environments Conference, June 22-26, 2015, Dallas, TX. Reston, Virginia: AIAA, 3176(2015).

    [20] Jacob D, Lai D, Delisi D et al. Assessment of lockheed Martin's aircraft wake vortex circulation estimation algorithms using simulated lidar data. [C]∥3rd AIAA Atmospheric Space Environments Conference, June 27-30, Honolulu, Hawaii. Reston, Virginia: AIAA, 3196(2011).

    [21] Smalikho I N, Banakh V A. Estimation of aircraft wake vortex parameters from data measured with a 1.5-μm coherent Doppler lidar[J]. Optics Letters, 40, 3408-3411(2015). http://www.ncbi.nlm.nih.gov/pubmed/26176481

    [22] Smalikho I N, Banakh V A, Holzäpfel F et al. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar[J]. Optics Express, 23, A1194-A1207(2015). http://www.ncbi.nlm.nih.gov/pubmed/26406749

    [23] Hallermeyer A, Bouteyre A D, Valla M et al. Development and assessment of a wake vortex characterization algorithm based on a hybrid LIDAR signal processing. [C]∥8th AIAA Atmospheric and Space Environments Conference, June 13-17, 2016, Washington, D. C. Reston, Virginia: AIAA, 3272(2016).

    [24] Smalikho I N, Banakh V A, Falits A V et al. Measurements of aircraft wake vortex parameters by a stream line Doppler lidar[J]. Atmospheric and Oceanic Optics, 30, 588-595(2017). http://link.springer.com/article/10.1134/S1024856017060136

    [25] Smalikho I N, Banakh V A, Falits A V et al. Experimental study of aircraft wake vortices on the airfield of tolmachevo airport in 2018[J]. Atmospheric and Oceanic Optics, 33, 124-133(2020). http://link.springer.com/article/10.1134/S1024856020020116

    [26] Smalikho I N. Taking into account the ground effect on aircraft wake vortices when estimating their circulation from lidar measurements[J]. Atmospheric and Oceanic Optics, 32, 686-700(2019).

    [27] Gao H, Li J B, Chan P W et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar[J]. Optics Express, 26, 16377-16392(2018).

    [28] Zhang H W, Wu S H, Yin J P et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 37, 468-475(2018).

    [29] Zhang H W, Wu S H, Wang Q C et al. Airport low-level wind shearlidar observation at Beijing capital international airport[J]. Infrared Physics & Technology, 96, 113-122(2019). http://www.sciencedirect.com/science/article/pii/S1350449518301634

    [30] Wu S H, Liu B Y, Liu J T et al. Wind turbine wake visualization and characteristics analysis by Doppler lidar[J]. Optics Express, 24, A762-A780(2016). http://europepmc.org/abstract/med/27409950

    [31] Zhai X C, Wu S H, Liu B Y et al. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness[J]. Optics Express, 25, A515-A529(2017).

    [32] Zhai X C, Wu S H, Liu B Y et al. Shipborne wind measurement and motion-induced error correction of a coherent Doppler lidar over the Yellow Sea in 2014[J]. Atmospheric Measurement Techniques, 11, 1313-1331(2018). http://www.ingentaconnect.com/content/doaj/18671381/2018/00000011/00000001/art00064

    [33] Yuan L C, Liu H, Liu J Q et al. Wind vector estimation of coherent Doppler wind lidar based on genetic algorithm[J]. Chinese Journal of Lasers, 47, 0810004(2020).

    [34] Zhao M, Guo P, Rui X B et al. Wind-field vector retrieval method at low signal-to-noise ratio for coherent Doppler lidar[J]. Chinese Journal of Lasers, 45, 1110005(2018).

    [35] Burnham D C, Hallock J N. Chicago monostatic acoustic vortex sensing system: volume IV: wake vortex decay Cambridge,[R]. MA: Transportation systems Center(1982).

    [36] Holzäpfel F, Gerz T, Köpp F et al. Strategies for circulation evaluation of aircraft wake vortices measured by lidar[J]. Journal of Atmospheric and Oceanic Technology, 20, 1183-1195(2003).

    [37] Lin M D, Huang W X, Zhang Z S et al. Numerical study of aircraft wake vortex evolution near ground in stable atmospheric boundary layer[J]. Chinese Journal of Aeronautics, 30, 1866-1876(2017). http://www.sciencedirect.com/science/article/pii/S1000936117301966

    [38] Harvey J K, Perry F J. Flowfield produced by trailing vortices in the vicinity of the ground[J]. AIAA Journal, 9, 1659-1660(1971).

    Xiaoye Wang, Songhua Wu, Xiaoying Liu, Jiaping Yin, Weijun Pan, Xuan Wang. Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar[J]. Acta Optica Sinica, 2021, 41(9): 0901001
    Download Citation