• Acta Optica Sinica
  • Vol. 41, Issue 9, 0901001 (2021)
Xiaoye Wang1, Songhua Wu1、2、3、*, Xiaoying Liu1, Jiaping Yin4, Weijun Pan5, and Xuan Wang5
Author Affiliations
  • 1Department of Marine Technology, College of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
  • 2Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
  • 3Institute for Advanced Ocean Study, Ocean University of China, Qingdao, Shandong 266100, China
  • 4Qingdao Leice Transient Technology Co., Ltd., Qingdao, Shandong 266100, China
  • 5Air Traffic Management Institute, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, China
  • show less
    DOI: 10.3788/AOS202141.0901001 Cite this Article Set citation alerts
    Xiaoye Wang, Songhua Wu, Xiaoying Liu, Jiaping Yin, Weijun Pan, Xuan Wang. Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar[J]. Acta Optica Sinica, 2021, 41(9): 0901001 Copy Citation Text show less
    Location and layout of wake vortex observation. (a) MNA; (b) CSIA(landing stage); (c) CSIA(take-off stage)
    Fig. 1. Location and layout of wake vortex observation. (a) MNA; (b) CSIA(landing stage); (c) CSIA(take-off stage)
    Flow chart of dynamic matching of PCDL scan fragments and flight information
    Fig. 2. Flow chart of dynamic matching of PCDL scan fragments and flight information
    Principle diagram of wake vortex identification with radial velocity method
    Fig. 3. Principle diagram of wake vortex identification with radial velocity method
    Principle diagrams of wake vortex identification with spectral width method. (a) Distribution of spectrum intensity; (b) schematic of spectrum width calculation
    Fig. 4. Principle diagrams of wake vortex identification with spectral width method. (a) Distribution of spectrum intensity; (b) schematic of spectrum width calculation
    Examples of wake vortex identification by PCDL with different methods (Type A333, 20180910T001839). (a) Radial velocity method; (b) spectral width method
    Fig. 5. Examples of wake vortex identification by PCDL with different methods (Type A333, 20180910T001839). (a) Radial velocity method; (b) spectral width method
    Bimodal distributions of radial velocity and spectrum width (Type A320, 20180910T000220)
    Fig. 6. Bimodal distributions of radial velocity and spectrum width (Type A320, 20180910T000220)
    Identification of vortex core horizontal position based on Dspeed,Dwidth and DR. (a)(b) 20180910T000138; (c)(d) 20180910T210542; (e)(f) 20180910T155221
    Fig. 7. Identification of vortex core horizontal position based on Dspeed,Dwidth and DR. (a)(b) 20180910T000138; (c)(d) 20180910T210542; (e)(f) 20180910T155221
    Radial velocity versus elevation angle (Type A333, 20180910T111901). (a) Left vortex core; (b) right vortex core
    Fig. 8. Radial velocity versus elevation angle (Type A333, 20180910T111901). (a) Left vortex core; (b) right vortex core
    Visualization of vortex core location (Type A333, 20180910T111901)
    Fig. 9. Visualization of vortex core location (Type A333, 20180910T111901)
    Theoretical and measured distributions of tangential velocity. (a) Theoretical distributions of tangential velocity and initial circulation[37]; (b) distribution of tangential velocity measured by PCDL (Type A333, 20180827T153828)
    Fig. 10. Theoretical and measured distributions of tangential velocity. (a) Theoretical distributions of tangential velocity and initial circulation[37]; (b) distribution of tangential velocity measured by PCDL (Type A333, 20180827T153828)
    Comparison of retrieved circulation and B-H model fitting (Type A333, 20181015T081139). (a) Left vortex core; (b) right vortex core
    Fig. 11. Comparison of retrieved circulation and B-H model fitting (Type A333, 20181015T081139). (a) Left vortex core; (b) right vortex core
    Radial velocity based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235035; (f) 20180907T235021; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
    Fig. 12. Radial velocity based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235035; (f) 20180907T235021; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
    Spectral width based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235021; (f) 20180907T235035; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
    Fig. 13. Spectral width based on wake vortex evolution of airbus A333. (a) 20180907T234926; (b) 20180907T234940; (c) 20180907T234954; (d) 20180907T235007; (e) 20180907T235021; (f) 20180907T235035; (g) 20180907T235049; (h) 20180907T235103; (i) 20180907T235117
    Evolution of wake vortex core position and circulation of airbus A333(20180907T2349). (a) Vortex core position; (b) circulation
    Fig. 14. Evolution of wake vortex core position and circulation of airbus A333(20180907T2349). (a) Vortex core position; (b) circulation
    Radial velocity based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324; (h) 20180907T190338
    Fig. 15. Radial velocity based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324; (h) 20180907T190338
    Spectral width based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324;(h) 20180907T190338
    Fig. 16. Spectral width based on wake vortex evolution of airbus B763. (a) 20180907T190201; (b) 20180907T190214; (c) 20180907T190229; (d) 20180907T190242; (e) 20180907T190256; (f) 20180907T190310; (g) 20180907T190324;(h) 20180907T190338
    Evolution of wake vortex core position and circulation of airbus B763 (20180907T1902). (a) Wake vortex core position; (b) circulation
    Fig. 17. Evolution of wake vortex core position and circulation of airbus B763 (20180907T1902). (a) Wake vortex core position; (b) circulation
    Radial velocity based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
    Fig. 18. Radial velocity based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
    Spectral width based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
    Fig. 19. Spectral width based on wake vortex evolution of airbus A320. (a) 20180907T041914; (b) 20180907T041928; (c) 20180907T041942; (d) 20180907T041956; (e) 20180907T042010; (f) 20180907T042024
    Evolution of wake vortex core position and circulation of airbus A320 (20180907T0419). (a) Wake vortex core position; (b) circulation
    Fig. 20. Evolution of wake vortex core position and circulation of airbus A320 (20180907T0419). (a) Wake vortex core position; (b) circulation
    Radial velocity and spectral width based on wake vortex evolution of airbus CRJ9. (a) 20180907T154531; (b) 20180907T154545; (c) 20180907T154559; (d) 20180907T154531; (e) 20180907T154545; (f) 20180907T154559
    Fig. 21. Radial velocity and spectral width based on wake vortex evolution of airbus CRJ9. (a) 20180907T154531; (b) 20180907T154545; (c) 20180907T154559; (d) 20180907T154531; (e) 20180907T154545; (f) 20180907T154559
    ParameterValue
    Wavelength /nm1550
    Pulse repetition rate /kHz10
    Pulse energy /μJ160
    Pulse width /ns100-200
    Power consumption /W<300
    Radial velocity measurement range /(m·s-1)-37.5-37.5
    Velocity measurement uncertainty /(m·s-1)≤0.1
    Measurement range /m40-6000
    Range resolution /m15-30
    Table 1. Technical specifications of Wind3D 6000 PCDL
    PhaseLocationDateScope
    Phase 1MNA20180806-20180821Observation of wake vortex during departing at MNA
    Phase 2CSIA20180825-20180920Observation of wake vortex during landing at CSIA
    Phase 3CSIA20180921-20181022Observation of wake vortex during departing at CSIA
    Table 2. Experimental information of wake vortex observation in Sichuan
    Parameter typeParameterSpecification
    PCDL observation parametersAzimuthal angle φ /(°)260(MNA)90(CSIA)
    Elevation angle θ /(°)0-25(phase 1)0-10(phase 2)0-30(phase 3)
    Scanning rate ω /[(°)·s-1]1-2
    Duration of each radial measurement Δt /sAbout 0.2
    Duration of each scanning t /s10-15
    Angle resolution Δθ /(°)0.1-0.4
    Aircraft trajectory informationTake-off run SD /m1500-3400
    Landing run SL /m1200-2600
    Maximum rate of climbing VC /(m·s-1)About 23
    Maximum rate of descending VD /(m·s-1)About 15
    Approach speed V0 /(m·s-1)66.9-75.1
    Characteristic speed /(m·s-1)1.33-1.90
    Characteristic time t0 /s13.3-36.7
    Table 3. PCDL observation parameters and aircraft trajectory information of wake vortex observation experiment in Sichuan
    Aircraft typeWing span /mMaximum take-off weight /(103 kg)Maximum landing weight /(103 kg)Initial distance between right and left wake vortex cores /mInitial circulation /(m2·s-1)Dissipation time /s
    A33360.3023018542100/130111
    B76347.5715913635180/12097
    A32034.1686620170/18570
    CRJ923.2373314165/7728
    Table 4. Dynamic parameters and wake vortex characteristic parameters of different aircraft types
    Xiaoye Wang, Songhua Wu, Xiaoying Liu, Jiaping Yin, Weijun Pan, Xuan Wang. Observation of Aircraft Wake Vortex Based on Coherent Doppler Lidar[J]. Acta Optica Sinica, 2021, 41(9): 0901001
    Download Citation